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Abstract
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1 Introduction

Dynamic decisions under risk are ubiquitous. Examples include the decisions when to sell an
asset, when to stop gambling, when to enter the jobmarket or to retire, when to buy a flight ticket
or a durable good, and when to stop searching for a house or a spouse. An extensive behavioral
literature of choice under risk—going back to Kahneman and Tversky (1979)—has singled out
the skewness of the underlying probability distribution as one important driver of risk attitudes.
In particular, people typically seek (positively) skewed and avoid negatively skewed risks. The
corresponding literature on skewness seeking has traditionally focused on static decisions in
order to explain, for instance, why people buy expensive insurance and lottery tickets at the
same time. In dynamic problems, skewness seeking even matters when the underlying risk
or stochastic process is symmetric (e.g., Barberis, 2012; Ebert and Strack, 2015; Ebert, 2020),
because the decision maker can select a skewed return distribution through the choice of her
stopping strategy. Hence, skewness seeking may play an even bigger role in dynamic than in
static problems.

Since skewness seeking in static and dynamic decisions plausibly stems from the same cog-
nitive mechanism, the existing literature has adapted static models of choice under risk — such
as expected utility theory (EUT) or cumulative prospect theory (CPT; Tversky and Kahneman,
1992) — to dynamic decision making. We follow this approach by studying, both theoreti-
cally and experimentally, the dynamic implications of Bordalo et al.’s (2012) salience theory. In
salience theory, skewness seeking in static problems originates from the idea that outcomes,
which are extreme relative to a reference point — such as the relatively large upside of a right-
skewed risk — are particularly salient. These outcomes attract a disproportionate amount of
attention and their probabilities are overweighted (Bordalo et al., 2012). Thus, salience the-
ory exhibits the core prediction that agents seek skewness (Dertwinkel-Kalt and Köster, 2020).
At the same time, the salience distortions are bounded, which places a tight limit on the de-
gree of probability weighting and therefore also on skewness seeking. Models that imply much
stronger skewness seeking than salience theory (such as CPT) could make reasonable predic-
tions in static settings but make unreasonably extreme predictions in some important dynamic
settings (Ebert, 2015). Hence, salience theory represents a natural candidate for modelling
skewness seeking in dynamic choices.

We therefore apply salience theory to dynamic contexts, andderive, test and support salience
theory’s predictions for dynamic choice under risk. We also document a strong relation be-
tween skewness seeking in static and in dynamic setups. This suggests that there is a common
mechanism that drives static and dynamic choice under risk, highlighting the importance of
developing a model that can explain both static and dynamic decisions.

In Section 3, we adapt salience theory to analyze dynamic choice under risk at the hand of
standard optimal stopping problems. We ask when a naïve1 salient thinker stops an Arithmetic

1Non-linear probabilityweighting implies that an agent’s optimal strategy at time tmight no longer be optimal at
some later point in time (e.g.,Machina, 1989). Optimal stopping behavior under salience theory and other behavioral
models, thus, depends on whether the agent is aware of this time-inconsistency (i.e., the agent is sophisticated) or
not (i.e., the agent is naïve). We assume that the agent is naïve (as Ebert and Strack, 2015), which is also supported
by our experimental results.
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BrownianMotion (ABM)with a non-positive drift and a finite expiration date. Expected utility
theory with a concave utility function cannot explain gambling when the agent loses money in
expectation, that is, when the ABM’s drift is negative. With a specific stopping strategy inmind,
a salient thinker, however, inflates the probabilities of those realizations that “differ most” from
his current wealth level (contrast effect), which might render gambling attractive. Adopting the
naïve decision rule proposed in the literature (e.g., Ebert and Strack, 2015), we assume that the
(naïve) salient thinker continues to gamble as long as he can find at least one stopping strategy
that is more attractive to him than stopping.

In Section 4, we derive our theoretical results. Unlike an expected-utility agent with a con-
cave utility function, a naïve salient thinker gambles even when he loses money in expectation.
At the same time, unlike in CPT (Ebert and Strack, 2015), a naïve salient thinker stops any ABM
with a sufficiently negative drift. In a next step, we restrict the choice set to all stop-loss and take-
profit strategies2 to learn more about how a näive salient thinker plans to stop, and how he will
revise this plan over time. These additional restrictions allow for more interesting experimental
predictions of salience theory. First, a salient thinker chooses a particular subset of stop-loss and
take-profit strategies, which give rise to a right-skewed distribution of returns; so-called loss-exit
strategies (see, e.g., Barberis, 2012; Heimer et al., 2023). A loss-exit strategy is defined as a stop-
loss and take-profit strategy forwhich the stop-loss threshold is closer to the current value of the
process than the take-profit threshold, so that — by the contrast effect — stopping at a gain is
more salient than stopping at a loss. Second, a naïve salient thinker does not necessarily follow
his initial plan, but might instead revise his strategy over time. In particular, salience theory
can rationalize stopping behavior that is consistent with the well-known disposition effect (e.g.,
Shefrin and Statman, 1985; Odean, 1998; Barberis, 2012).

Section 5 presents a laboratory experiment that is designed to test our salience-based predic-
tions on stopping behavior. Participants in the experiment have to decide when to stop ABMs
with different non-positive drifts. Subjects stop the process by defining an upper and a lower
bound and the process is stopped if it reaches either bound. If a process is stopped, subjects
can either sell it or restart it by moving the bounds. This design allows us to test whether sub-
jects choose loss-exit strategies (i.e., strategies with a salient upside) and whether they revise
their initial strategies as predicted by the model. We validate our approach of adapting the
static salience model to an optimal stopping problem by further eliciting skewness seeking in
static choices. Generalizing results from Dertwinkel-Kalt and Köster (2020), we show that, for
a fixed expected value and variance, a salient thinker chooses a binary lottery over the safe op-
tion paying its expected value with certainty if and only if the lottery’s skewness exceeds some
threshold. If salience is indeed the psychological mechanism driving skewness seeking in gen-
eral, it should coherently explain revealed attitudes toward skewness in such static choices as
well as in the optimal stopping problems.

2A stop-loss and take-profit strategy is characterized by a stop-loss threshold below the current value of the
process and a take-profit threshold above the current value of the process at which the process will be stopped.
These strategies are often proposed by retail banks to their customers (see., e.g., the brokerage data by Heimer et al.,
2023) and have attracted much attention in the related literature (e.g., Xu and Zhou, 2013; Ebert and Strack, 2015;
Fischbacher et al., 2017; Heimer et al., 2023). Important for us, these strategies allow agents to obtain skewed return
distributions even if the underlying stochastic process is symmetric.
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In Section 6, we present our experimental results. First of all, we find that subjects select
skewed return distributions: for the median subject, more than 70% of all chosen strategies are
loss-exit strategies. Furthermore, 93% of the subjects revise their initial strategy at least once,
and actual behavior is reminiscent of the disposition effect.

We next examine how sensitive subjects’ stopping decisions are to the drift of the process.
While it might seem obvious that fewer subjects should gamble with more negative drifts, both
EUT andCPT predict that this is not the case. Risk averse EUT agents should not gamble for any
non-positive drift. In contrast, subjects following the commonly used CPT-models as analyzed
by Ebert and Strack (2015) should always gamble regardless of how negative the drift is. We
find that most subjects start gambling a fair process with a drift of zero, but then stop before
reaching the expiration date. Moreover, subjects stop the earlier, the more negative the drift
of the process. Interpreted through the lens of our model, these results indicate heterogeneity
in the strength of salience distortions of our subjects: Around 95% of the subjects reveal suffi-
ciently strong salience distortions that they start the fair process, but for only 60% of the subjects
salience distortions are so strong that also gambling with the most negative drift is attractive.

We also find a positive correlation between static and dynamic skewness seeking, which
is both, statistically and economically, significant: subjects that reveal stronger skewness seek-
ing in static choices also have a larger propensity to choose loss-exit strategies in the dynamic
ones. Overall, our experimental results suggest that a good model of dynamic risk-taking with-
out commitment should include moderately strong skewness seeking. Moreover, it should be
based on a mechanism that can also explain skewness seeking in static choices. Our salience
theory model fulfils these criteria and is therefore able to coherently explain choices in static
and dynamic problems.

In Section 7, we show that several popular models of static choice under risk struggle to ex-
plain the dynamic evidence from our experiment because they either predict too strong skew-
ness seeking or no skewness seeking at all. Arguably, alternative models with the right strength
of skewness seeking that allows to explain our data can be developed, but we are not aware of
any such model among the commonly used ones. Moreover, as salience theory can jointly ex-
plain static and dynamic data, we regard it as a prime candidate for a unified model of static
and dynamic choice under risk.

We conclude in Section 8 by discussing further applications of our findings.

2 Related Literature on Behavioral Stopping

Our paper is related to a large theoretical (e.g., Machina, 1989; Karni and Safra, 1990; Barberis,
2012; Ebert and Strack, 2015, 2018; Henderson et al., 2017; He et al., 2019; Strack and Viefers,
2021) as well as a growing experimental (e.g. Imas, 2016; Nielsen, 2019; Strack and Viefers,
2021; Heimer et al., 2023) literature on behavioral stopping. On the one hand, we add to the the-
oretical literature by providing the first study of behavioral stopping in salience theory. On the
other hand, we contribute to the experimental salience literature (for a survey, see Bordalo et al.,
2022) by testing salience theory’s predictions on behavioral stopping as well as by investigating
whether it can coherently explain both static and dynamic choice under risk.
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Most existing theoretical work on behavioral stopping deals with the implications of non-
linear probability weighting for dynamic gambling, with a focus on the behavior predicted by
cumulative prospect theory (henceforth: CPT, see Machina, 1989; Karni and Safra, 1990; Bar-
beris, 2012; Xu and Zhou, 2013; Ebert and Strack, 2015, 2018; Henderson et al., 2017, 2018; He
et al., 2019). This focus can be explained by the fact that non-linear probability weights imply
(empirically relevant) time-inconsistent preferences (e.g., Machina, 1989). Predicted behavior
depends, in particular, on whether or not the agent is naïve about his time-inconsistency. A
naïve agent will revise his strategy throughout time, while a (fully) sophisticated agent fore-
sees her intention to adjust certain strategies and chooses only strategies she will actually follow
throughwith (e.g., Karni and Safra, 1990). With time-inconsistent preferences also the question
ofwhether the agent can commit to a strategy becomes important. The literature has studied the
stopping behavior of naïve agents without commitment (e.g., Barberis, 2012; Ebert and Strack,
2015) as well as with partial or full commitment (e.g., Xu and Zhou, 2013; Henderson et al.,
2017; He et al., 2019).

For our purpose of testing salience theory’s predictions, the setups with naïvete, but with-
out commitment are relevant (Barberis, 2012; Ebert and Strack, 2015): naïvete is a more plausi-
ble assumption than sophistication (for instance, sophisticates should not start gambling with
non-positive drifts), and only the absence of commitment allows to test whether predictions
on time-inconsistent behavior hold true. In the seminal paper by Barberis (2012), it is numer-
ically shown that in finite discrete time setups naive CPT agents without commitment mostly
choose loss-exit (as compared to gain-exit) strategies and start to gamble (at least for a wide
range of parameters), but revise their strategies, so that ex post they exhibit gain-exit behavior.
The reason is that close to the expiration date, agents cannot choose strongly skewed return dis-
tributions anymore, and therefore exit earlier than intended.3 In continuous time setups, this
mechanism is not at work: agents can always choose strongly skewed return distributions and,
as a consequence, naive CPT-agents never stop (Ebert and Strack, 2015). This also holds true
with an indefinite end date: for most empirically relevant cumulative prospect theory param-
eter values, a naive agent does not stop with probability one at any loss level (He et al., 2019).
This never-stopping prediction can only be avoided by allowing for randomized stopping strate-
gies and thereby some form of commitment (Henderson et al., 2017), or by imposing different
functional forms for dynamic choices than those typically used for static choices (Duraj, 2020;
Huang et al., 2020). We show in how far the predictions of salience theory differ from those by
other models such as CPT, and show in particular that dynamic salience theory does not yield
the (too) extreme never-stopping prediction that Ebert and Strack (2015) have derived for CPT.

We also contribute to the small, but growing experimental literature on behavioral stopping
(e.g., Imas, 2016; Nielsen, 2019; Strack andViefers, 2021). Unlike us, these papers focused on the
question in how far stopping decisions are path-dependent; in particular, in how far the realiza-
tion of previous gains and losses affects behavior. Closest related to us is the contemporaneous
paper by Heimer et al. (2023), who study optimal stopping behavior using a process consisting
of repeated (fair) coin tosses. Similarly to us, they focus on stop-loss and take-profit strategies,

3Heimer et al. (2023) provide direct experimental evidence for this prediction.
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and they find, both in laboratory experiments as well as in observational brokerage data, that
subjects ex ante choose loss-exit strategies, but then deviate by revealing disposition-effect-like
behavior. Both findings are also reflected in our data. In contrast to Heimer et al. (2023), our
paper is focused on salience theory and establishes a novel link between static and dynamic
skewness seeking.

3 A Dynamic Version of Salience Theory of Choice under Risk

3.1 Static Model

Consider an agent who has to choose from some set C that contains exactly two non-negative
random variables (or lotteries), X and Y , with a joint cumulative distribution function (CDF)
F : R2

≥0 → [0, 1]. A state of the world here refers to a tuple of outcomes, (x, y) ∈ R2
≥0. We denote

the state space by S ⊆ R2
≥0. If a random variable is degenerate, we call it a safe option.

According to salience theory of choice under risk (Bordalo et al., 2012), the agent is a salient
thinker, who evaluates a random variable by assigning a subjective probability to each state of
theworld s ∈ S that depends on the state’s objective probability and on its salience. The salience
of a state is assessed by a so-called salience function, which is defined as follows:

Definition 1 (Salience Function). We say that a symmetric, bounded, and twice differentiable function
σ : R2

≥0 → R>0 is a salience function if and only if it satisfies the following two properties:4

1. Ordering. Let x ≥ y. Then, for any ϵ, ϵ′ ≥ 0 with ϵ+ ϵ′ > 0, we have

σ(x+ ϵ, y − ϵ′) > σ(x, y).

2. Diminishing sensitivity. For any x > y and any ϵ > 0, we have

σ(x+ ϵ, y + ϵ) < σ(x, y).

We say that a given state of the world (x, y) ∈ S is the more salient the larger its salience
value is. The ordering property implies that a state of the world is the more salient the more
the attainable outcomes in this state differ. In this sense, ordering captures the well-known
contrast effect (e.g., Schkade andKahneman, 1998), whereby large contrasts (in outcomes) attract
a great deal of attention. Diminishing sensitivity reflectsWeber’s law of perception, and it implies
that the salience of a state decreases if the outcomes in this state uniformly increase. Hence,
diminishing sensitivity describes a level effect, according to which a given contrast in outcomes
is less salient at a higher outcome level, thereby qualifying the contrast effect.

A salient thinker is intrinsically (weakly) risk-averse but may, depending on the salience of
outcomes, sometimes behave as if being risk-seeking. He evaluates monetary outcomes via a
strictly increasing, (weakly) concave, and twice differentiable value function v : R≥0 → R≥0,

4Bordalo et al. (2012) also allow for random variables with negative outcomes and add a third property to ensure
that diminishing sensitivity (with respect to zero) reflects to the negative domain: by the reflection property, for any
w, x, y, z ≥ 0, it holds that σ(x, y) > σ(w, z) if and only if σ(−x,−y) > σ(−w,−z).
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and forms an “expectation” by assigning each state of the world a (probability) weight that de-
pends on how a given option compares to the alternative at hand in this state. More specifically,
a salient thinker behaves as if maximizing a salience-weighted utility, which is defined as follows:

Definition 2. The salience-weighted utility of a random variable X evaluated in C = {X,Y } equals

U s(X|C) =
∫
R2
≥0

v(x) ·
σ
(
v(x), v(y)

)∫
R2
≥0

σ
(
v(s), v(t)

)
dF (s, t)

dF (x, y),

where σ : R2
≥0 → R>0 is a salience function that is bounded away from zero.

Since the salience-weighted probabilities are normalized so that they sum up to one (e.g.,
Bordalo et al., 2012; Dertwinkel-Kalt and Köster, 2020), a salient thinker’s valuation of a safe
option x ∈ R≥0 is undistorted and given by v(x), irrespective of the properties of the alternative
option.

3.2 Dynamic Model

Stochastic process. Following Ebert and Strack (2015, 2018), we model an agent’s wealth via
a Markov diffusion. Specifically, we consider an Arithmetic Brownian Motion (ABM),

dXt = µdt+ νdWt,

with an initial value X0 = x, a constant drift µ ∈ R and a constant volatility ν ∈ R>0, as well as
a standard Brownian Motion (Wt)t∈R≥0

.
Tomake the theory testable in the context of an incentivized lab experiment, we deviate from

Ebert and Strack (2015, 2018) in two ways: First, we assume that the process is non-negative,
and absorbing in zero. Second, we allow for a finite expiration date T ∈ R>0 ∪ {∞}.

Stopping strategies. As in Ebert and Strack (2015), we represent the set of stopping strategies
by the set of stopping times, where each stopping time τ refers to a deterministic plan of when
to stop the process. The central feature of a stopping time is that it is based on past information
only: that is, any τ is adapted to the natural filtration (Ft)t∈R≥0

of the process (Xt)t∈R≥0
. For a

fixed expiration date T ∈ R>0 ∪ {∞}, choosing a stopping time τ ≤ T (with probability one)
implements a random wealth level Xτ with a cumulative distribution function denoted by Fτ .

For our first results, we do not impose any restrictions on the set of deterministic stopping
times that the agent can choose from. But, to learn more about the strategies that are attractive
to a salient thinker and the role of skewness for stopping behavior, we derive additional results
under the assumption that the agent is restricted to choose a threshold stopping time τa,b —defined
as the first leaving time of the interval (a, b)— that implements a random wealth levelXT∧τa,b .
The set of threshold stopping times represents the set of stop-loss and take-profit strategies,
which are often proposed by retail banks to their customers (see., e.g., the brokerage data by
Heimer et al., 2023) and which have attracted much attention in the behavioral and financial
literature (e.g., Xu and Zhou, 2013; Ebert and Strack, 2015; Fischbacher et al., 2017; Heimer et al.,
2023).
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Solution concept under salience theory. Any form of non-linear probability weighting —
whether it is salience-driven or mechanical — implies that an agent’s optimal strategy at time
t might no longer be optimal at some later point in time (e.g., Machina, 1989). Thus, optimal
stopping behavior under salience theory depends onwhether or not the salient thinker is aware
of this time-inconsistency. We follow Ebert and Strack (2015) in assuming that the agent is
naïve about his time-inconsistency. As we think of salience effects as unconscious distortions of
perception, we regard the assumption of naïvete as sensible. In Section 5 and Appendix B, we
further discuss how to experimentally test this assumption within the salience framework.

As in Ebert and Strack (2015), we assume that “at every point in time the naïve [salient
thinker] looks for a [...] strategy τ that brings him higher [salience-weighted utility] than stop-
ping [...]. If such a strategy exists, he holds on to the investment — irrespective of his earlier
plan.” Assuming that the naïve salient thinker continues to gamble if and only if he strictly
prefers to do so, the decision rule then reads as follows.

Definition 3 (Continuation Rule). Let xt ∈ R≥0 be the current wealth level at time t ∈ [0, T ). A naïve
salient thinker continues at time t if there exists a stopping time τ , such that U(Xτ |{Xτ , xt}) > u(xt),
that is, if the salient thinker finds a strategy that gives him a strictly higher salience-weighted utility than
stopping at time t. Otherwise, the naïve salient thinker stops at time t.

Our decision rule imposes the additional assumption that a naïve salient thinker evaluates
each stopping strategy in isolation: at any point in time, the consideration set — that is, the set
of strategies that the agent compares when making his stopping decision — includes a single
strategy to continue with, Xτ , and the alternative to stop right now, xt; the consideration set
thus is assumed to be {Xτ , xt}. Since salience theory is a model of context-dependent behavior
to derive testable predictions, it is necessary to impose some assumption on the consideration
set. With infinitely many strategies to choose from, we regard the above specification as plau-
sible. Moreover, our experimental design (see Section 4 for details) highlights a single strategy
at a time, so that subjects likely evaluate this strategy in isolation. Still, one might argue that
previously chosen strategies affect the perception ofwhatever strategy is considered next. With-
out any guidance on how the consideration set changes over time, however, it is impossible to
provide a comprehensive analysis.5 To tie our hands, we pre-registered our assumptions on the
consideration set before running the experiment.

5When restricting attention to stop-loss and take-profit strategies, one could argue that the previously chosen
lower bound ap of a stop-loss and take-profit strategy provides a “reference point” for the newly selected lower
bound an, and that the previously chosen upper bound bp provides a “reference point” for the newly chosen upper
bound bn in the sense that the respective salience weights are σ(v(an), v(ap)) and σ(v(bn), v(bp)). Then, conditional
on not stopping the process, subjects would always adjust the upper threshold by more than the lower threshold, as
otherwise the lower threshold would be salient. While this prediction is inconsistent with the data that we present
later on, there might be other specifications of the consideration that are consistent with our experimental findings.

7



4 Stopping Behavior of a Naïve Salient Thinker

4.1 Motivating Example

To illustrate the salience mechanism, consider a salient thinker with a linear value function,
v(x) = x, who decides when to stop a fair process with zero drift that does not expire (T = ∞).
Suppose that the agent adopts a stop-loss and take-profit strategy, which can be represented by
a threshold stopping time τa,b with a being the lower and b being the upper threshold. Such a
strategy induces a binary lottery, Xτa,b = (a, p; b, 1− p), over wealth. Because the process has a
drift of zero, at time t, the expected value of following this stop-loss and take-profit strategy is
Et[Xτa,b ] = xt. Does the salient thinker ever stop?

It is immediate to see that a salient thinker with a linear value function chooses a binary
lottery with upside payoff b, downside payoff a, and expected value xt over the safe option
paying xt if and only if the lottery’s upside b is assigned a larger salienceweight than the lottery’s
downside a, that is, if and only if σ(b, xt) > σ(a, xt). As a consequence, whenever σ(b, xt) >

σ(a, xt), following the stop-loss and take-profit strategy represented by τa,b is more attractive
to the salient thinker than stopping at time t. Since σ(b, xt) > σ(xt, xt) due to ordering, and
since the salience function is continuous, we can always find a stopping time τa,b —with a close
enough to the current wealth level xt — that the salient thinker prefers to stopping at time t.
Hence, he never stops. It is easily verified that the result remains to hold for a finite expiration
date. All missing proofs are provided in Appendix A.

Proposition 1. Fix an initial wealth level x ∈ R>0 and expiration date T ∈ R>0∪{∞}. A naïve salient
thinker with a linear value function does not stop a process with zero drift at any positive level of wealth.

4.2 Main Theoretical Result

We are interested in how general the never-stopping result derived in the previous subsection
is. By Definition 3, a salient thinker continues (or starts) to gamble if he can find a strategy
that gives him strictly higher utility than not gambling. We will now show that there are two
reasons why a salient thinker cannot find such a strategy and hence stops before the expiration
date: either the drift of the process is sufficiently negative, or the salient thinker is intrinsically
risk-averse. More precisely, while a naïve salient thinker with a linear value function also holds
processes with a slightly negative drift until the expiration date, a salient thinker with a suffi-
ciently concave value function does not start even a fair process, and this holds irrespective of
his intrinsic risk-aversion (i.e., irrespective of how concave his value function is). This last pre-
diction distinguishes salience theory from models like CPT (see Ebert and Strack, 2015), and it
constitutes our main theoretical result.

Consider an ABM with an arbitrary drift µ ∈ R and volatility ν ∈ R>0. By Definition 3, a
naïve salient thinker does not start to gamble if and only if, for any stopping time τ ≤ T ,∫

R≥0

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
dFτ (z) ≤ 0, (1)

where Fτ denotes the CDF of the induced wealth level Xτ . Fixing the initial value X0 = x, we
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define an auxiliary utility function ũ(z) :=
(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
, which is strictly increasing

and differentiable in z ∈ R≥0. By construction, the condition derived in Eq. (1) is equivalent to∫
R≥0

ũ(z) dFτ (z) ≤ ũ(x).

In words, for any fixed initial value X0 = x, a naïve salient thinker does not start if and only if
an EUT-agent with a utility function ũ(·) does not start. The main step in proving that a naïve
salient thinker does not start any ABMwith a sufficiently negative drift, is to derive a bound on
how risk-seeking a salient thinker can ever be.

Our first result approximates a salient thinker’s willingness to take risk by that of an EUT-
agent with an exponential utility function. More precisely, there is an EUT-agent with exponen-
tial utility who takes up some risks that a salient thinker certainly avoids, thereby imposing a
bound on the salient thinker’s willingness to take risk. Given that we can approximate a salient
thinker’s willingness to take risk by that of an EUT-agent with an exponential utility function,
we can apply Proposition 1 in Ebert and Strack (2015) to show that a naïve salient thinker does
not start any process with a sufficiently negative drift.

Theorem 1. For any expiration date T ∈ R>0∪{∞}, any initial wealth level x ∈ R>0 and any volatility
ν ∈ R>0, there exists some µ̃ ∈ R, such that a naïve salient thinker does not start any process with a drift
µ < µ̃.

Building on Theorem 1, we observe that an intrinsically risk-averse salient thinker may not
even start a fair process; whether he does so depends on his intrinsic risk aversion (i.e., the con-
cavity of his value function). We thus obtain the following corollary to the preceding theorem.

Corollary 1. Depending on the concavity of their value function, salient thinkers may start or not start
a process with zero drift.

Theorem 1 and Corollary 1 allow us to distinguish between salience theory and its main
alternative models (as discussed in detail in Section 7): EUT with a concave value function as
well as reference-dependent preferences without probability weighting predict that a process
with a non-positive drift is not started, while CPT and models of disappointment aversion pre-
dict that such a process is always started (and even never stopped before the expiration date).
Salience theory permits for (an arguably more realistic) heterogeneity in gambling behavior.

That salience theory producesmore realistic predictions thanCPT is due to the boundedness
of the salience function; if the salience function was unbounded, similar predictions as in CPT
would prevail. While Bordalo et al. (2012) did not psychologically motivate the boundedness
of the salience function they assumed, it is in line with the well-known fact that humans have
difficulties interpreting numbers outside of the range they commonly experience, namely, very
small and very large numbers (see Resnick et al., 2017, for a review). Salience distortions stem
from large payoff contrasts that attract attention. But when humans cannot well understand the
difference in magnitude between two large numbers, then it is natural to assume that increas-
ing a large contrast even further does not induce a (strong) behavioral reaction and, therefore,
should also not distort salience weights much further (as salience theory wants to well-describe
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actual behavior). This is precisely the effect that the boundedness of the salience function pro-
duces.6

4.3 Gambling an (Un)Fair Process with Stop-Loss and Take-Profit Strategies

To learn more about the behavior of a naïve salient thinker, we restrict the choice set to all stop-
loss and take-profit strategies, and consider only processes with a non-positive drift, µ ∈ R≤0.
First, we characterize the type of stop-loss and take-profit strategies that is attractive to a salient
thinker. Second, using the additional structure, we derive a stronger result on the limits of naïve
gambling. Third, we show that salience theory can rationalize the disposition effect; that is, the
tendency to rather stop processes that have increased in value than those that have decreased
in value (e.g., Shefrin and Statman, 1985; Odean, 1998; Weber and Camerer, 1998; Imas, 2016).

The role of skewness in naïve gambling. When referring to skewness, we use the most con-
ventional definition of skewness, whereby skewness S[X] of a lotteryX is defined by the third
standardized central moment

S[X] := E

(X − E[X]√
V ar[X]

)3
 . (2)

We can then define right- and left- skewness as well as loss-exit strategies, a subset of stop-loss
and take-profit strategies that give rise to right-skewed return distributions.

Definition 4. Lottery X is called right-skewed (or, equivalently, positively skewed) if S(X) > 0,
left-skewed (or, equivalently, negatively skewed) if S(X) < 0, and symmetric otherwise.

Definition 5 (Loss-Exit Strategy). Suppose current wealth level xt. Then a loss-exit strategy is a
stop-loss and take-profit strategy τa,b (with b denoting the upper and a the lower threshold) such that
b− xt > xt − a.

A loss-exit strategy derives its name from combining a relatively large upside with a mod-
erate downside (so that the upper threshold is further away from the current wealth level than
the lower threshold), which makes it likely to stop at a loss when the process of the drift is non-
positive. To show that such a strategy induces a right-skewed return distribution, suppose the
underlying process has a non-positive drift and no expiration date. Then, a loss-exit strategy
induces a binary lottery that is positively skewed (this directly follows from the fact that the
upper threshold is reachedwith less than 50% probability, see Lemma 1 in Dertwinkel-Kalt and
Köster, 2020). As a finite expiration date induces a very complicated CDF (see Lemma 2 in the
Appendix), we cannot analytically prove that this holds true also with a finite expiration date;
we can, however, back this claim with the help of numerical simulations, where we simulate

6Interestingly, a similar argument can also motivate the fact that probability distortions are unbounded in
prospect theory. In standard prospect theory, agents mechanically overweight small probabilities, and in cumu-
lative prospect theory, they overweight the probabilities of extreme events, which are also small for most probability
distributions. When humans are bad at distinguishing between the magnitude of two small probabilities, it makes
sense that shrinking an already small probability further does not affect the subjective probability by much. Hence,
probabilities in prospect theory become more and more overweighted as they get smaller.
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repeatedly playing loss-exit strategies in our setup with a finite expiration date and calculate
the skewness of the resulting empirical distribution (see Appendix A.6).

Contrast and level effect together imply that a salient thinker adopts a stop-loss and take-
profit strategy only if it is a loss-exit strategy. To see why, consider again the case without an
expiration date, and assume a drift of zero and a linear value function. In this case, any stop-
loss and take-profit strategy is associated with a threshold stopping time τa,b and, because the
process has zero drift, it induces a binary lottery Xτa,b = (a, p; b, 1 − p) with an expected value
of E[Xτa,b ] = x. A salient thinker, thus, adopts a stop-loss and take-profit strategy only if the
upside of the corresponding binary lottery is salient. If b − xt ≤ xt − a, then by the contrast
and the level effect, the downside state where a is realized is more salient than the upside state
where b is realized, which makes this stop-loss and take-profit strategy unattractive to a salient
thinker. Conversely, due to the level effect of the value function, b− xt > xt − a does not imply
that the lottery’s upside b is more salient than the downside a, so that a salient thinker does not
find every loss-exit strategy attractive. All arguments extend to processes with a negative drift
and to a setup with a finite expiration date, as well as to our salience model where the value
function is not linear, but weakly concave. We obtain:

Proposition 2. If a salient thinker does not stop a process, he always chooses a loss-exit strategy.

As loss-exit strategies induce positively skewed return distributions (see our argumentation
after Definition 5), this proposition implies that a salient thinker is skewness seeking. Specifically,
while she does not find every strategy leading to a positively skewed outcome distribution or
even every loss exit strategy attractive, every strategy that she does find attractive is positively
skewed.7

Astronger result on the limits of naïve gambling. Using Proposition 2, we can strengthen our
result on the limits of naïve gambling: a salient thinker, who is restricted to choose a stop-loss
and take-profit strategy, does not start if and only if the drift falls below some threshold.

To fix ideas, let us get back to the case of no expiration date, so that any stop-loss and take-
profit strategy induces a binary lotteryXτa,b = (a, p; b, 1−p) over wealth. For any such strategy,
the probability p = p(a, b, µ), with which the downside of the corresponding binary lottery is
realized, monotonically decreases in the drift of the process. Hence, an increase in the drift µ
improves the distribution induced by a stop-loss and take-profit strategy in terms of first-order
stochastic dominance. By Proposition 1 inDertwinkel-Kalt andKöster (2020), a salient thinker’s
certainty equivalent is monotonic with respect to first-order stochastic dominance shifts. This
implies that, if a salient thinker is willing to gamble according to stopping time τa,b for a drift
µ′, then this stopping time is still more attractive than not starting for any drift µ > µ′. In sum,
a naïve salient thinker does not start if and only if the drift falls below some threshold.

What happens ifwe allow for a finite expiration date instead? Because the drift of the process
affects the probability of stopping before the expiration date, it is not clear, in general, whether

7Notably, in salience theory, it is not the case that when choosing among two positively skewed lotteries, the
more skewed lottery is always preferred (which has been formally proven in Corollary 2 in Dertwinkel-Kalt and
Köster, 2020).
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the distribution of XT∧τa,b improves in terms of first-order stochastic dominance as the drift
increases. For loss-exit strategies, however, an increase in the drift does improve the distribution
of XT∧τa,b in terms of first-order stochastic dominance (Lemma 2 (d) in Appendix A). Hence,
by Proposition 2, we can again invoke Proposition 1 in Dertwinkel-Kalt and Köster (2020) to
establish that a salient thinker’s gambling behavior is monotonic in the drift of the process.

Proposition 3. For any expiration date T ∈ R>0 ∪ {∞}, any initial wealth level x ∈ R>0 and any
volatility ν ∈ R>0, there exists some constant µ̃ ∈ R, such that a naïve salient thinker—who is restricted
to choose a stop-loss and take-profit strategy— does not start if and only if the drift of the process satisfies
µ ≤ µ̃.

Proposition 3 differs from Theorem 1 in two aspects: on the one hand, the class of strate-
gies that we consider is more restrictive as we only consider stop-loss and take-profit strategies
here; but on the other hand, we obtain in Proposition 3 not just an “if”, but an “if and only if”
statement.

Salience theory and the disposition effect. Even if only stop-loss and take-profit strategies
are available, so that planned behavior is path-independent, salience theory can explain actual
behavior consistent with the disposition effect; i.e., the tendency to rather stopwhen the process
has increased in value than decreased in value. Our salience-based explanation of the disposi-
tion effect is similar in spirit to the CPT-based one by Barberis (2012): it is not the exact path of
the process, but the current wealth level that affects a salient thinker’s disposition to stop.

To establish an intuition for when a salient thinker is likely to stop, let us again abstract from
an expiration date. A naïve salient thinker stops at time t if and only if, for any ϵ, ϵ′ > 0,

σ
(
v(xt − ϵ), v(xt)

)
σ
(
v(xt + ϵ′), v(xt)

) × v(xt)− v(xt − ϵ)

v(xt + ϵ′)− v(xt)
≥ 1− p

p
, (3)

where p = p(ϵ, ϵ′, µ) denotes the probability of stopping at a loss relative to the current wealth
level. Because of the constant drift, the right-hand side of (3) is independent of the current
wealth level xt (see Lemma 1 in Appendix A). If the left-hand side of (3) is increasing in xt, the
salience model, thus, predicts a disposition effect: in this case, stopping becomesmore likely after
the process has increased in value and less likely after it has decreased in value. If the left-hand
side of (3) is decreasing in xt, however, salience theory predicts the exact opposite behavior. In
sum, salience theory can rationalize, but does not predict the disposition effect.

While in general we stay agnostic regarding the functional forms of salience and value func-
tions, it could still be interesting to see whether common salience specifications could explain
the disposition effect or not. So far, the salience literature has adopted the specification proposed
in Bordalo et al. (2012), which uses a linear value function and salience function

σ(x, y) =
|x− y|

|x|+ |y|+ θ
(4)

with θ > 0. In Appendix A.5 we examine whether this salience specification predicts the dis-
position effect and find that this is not the case. Hence, in order for salience theory to predict
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the disposition effect, other salience specifications are needed: either other salience functions
or other value functions (e.g., piece-wise linear value function reflecting loss aversion, as used
in the Online Appendix of Bordalo et al., 2012).

5 An Experiment on Dynamic Gambling Behavior

In this section, we present and discuss our experimental design. A translated version of the
experiment is available at: https://os-experiment-archive.herokuapp.com/demo.8

5.1 Experimental Design

We conducted a pre-registered lab experiment in which subjects had to repeatedly decide at
which price to sell different assets. Subjects made their selling decisions in (approximately)
continuous time, and they could hold each asset for a maximum duration of 10 seconds. If a
subject did not sell an asset within 10 seconds, it was automatically sold at the price reached
at the expiration date. We set the initial price of each asset to x = 100 Taler, an experimental
currency that was converted into e at a ratio of 10:1 at the end of the experiment.

The price of an asset followed an ABM with a drift µ ∈ {0,−0.1,−0.3,−0.5,−1,−2} and
a volatility ν = 5. The price was updated every tenth of a second (i.e. T = 100), with the
price changes being drawn from a normal distribution with mean µ and variance ν2.9 Hence,
although the implemented price paths are not truly continuous, the incentives provided to the
subjects are exactly the same as in the continuous-timemodel introduced in Section 3. Moreover,
while using a discrete number of time periods is necessary for implementation, the process
looked smooth, and subjects could not know how many discrete steps it consisted of.

As it is illustrated in Figure 1, we restricted the choice set to all stop-loss and take-profit
strategies: at every point in time, subjects could choose an upper and a lower stopping thresh-
old. Once the price of the asset reached either threshold, subjects could decide whether to
sell the asset at this price or to adjust the thresholds and continue the process (see the lower
left panel); that is, the strategies were non-binding to rule out any form of commitment. Sub-
jects could pause the process at any point in time to adjust the thresholds (see the upper right
panel). But, importantly, subjects could set only one upper threshold and one lower thresh-
old at a time, and thus observed a stopping strategy in isolation. At the beginning, the upper
and lower threshold were centered symmetrically around the initial price (see the upper left
panel). To start the process, subjects had to move each threshold at least once. Before starting
the process, subjects could decide to sell the asset immediately (see also the upper left panel).

Overall, subjects made six selling decisions, one decision for each of the drift parameters.
The order of the drifts was randomized at the subject level. It is important for our analysis to
make sure that subjects understand before the start of the decision round that a non-positive
drift of a process means that they will, on average, not gain money from gambling with this

8The experimental design, including the fully specified salience model and its predictions, was pre-registered
in the AEA RCT registry as trial AEARCTR-0005359.

9Notice that the drift of an ABM is additive over time. To help subjects understand what the drift of a process
is, we thus presented them aggregated drifts per second (i.e., 10 µ) in the experiment.
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Figure 1: Screenshots of the decision screen for the process with zero drift (in German). The text above
the chart mentions the drift for this round (“The practice rounds are over now - now it’s getting serious.
Please make your selling decision. The drift in this round is 0.”). The red lines indicate the upper and
lower stopping thresholds. The blue button in the upper left panel says "Sell Immediately". The button in
the upper right panel allows subjects to pause the process. The buttons in the lower left panel say "Sell"
or "Adjust the bounds". The lower right panel shows the final selling price.

process. If they do not understand this, they might start gambling (even if they have EUT
preferences), because they expect to earn money; then they would stop as soon as they have
learned from observing the process during the decision round that they are losing money over
time.

We have two approaches to rule out such learning about the drift during the decision round:
First, at the beginning of each round, we inform the subjects about this round’s drift. If subjects
fully understand the implications of a given drift, this would be sufficient to rule out learning.
However, subjects may not understand the meaning of a drift, despite our explanations in the
instructions. Therefore, we also let subjects watch the development of three sample paths from
the underlying process for 10 seconds each. Moreover, we show them an overview of ten ad-
ditional sample paths of the process (see Figure 2). These thirteen sample paths that subjects
see before making a decision (which were randomly drawn at the subject level, meaning that
different subjects saw different sample paths of the same underlying process) should give them
a quite good understanding of the process and its drift. Thus, we feel confident that substantial
learning during the decision round while watching the change of the process is not a driver of
our results.

After completing the six stopping problems, subjects faced a series of twelve (static) choices
between a binary lottery and the safe option paying the lottery’s expected value with certainty.
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Figure 2: Screenshots of the sampling screens for the process with zero drift (in German).

We used two sets of lotteries with the exact same expected value (eithere30 ore50) and the ex-
act same variance, but different levels of skewness (see Table 2 in Appendix C for an overview).
The order of the lotteries was randomized at the subject level. Finally, subjects answered five
questions of a modified cognitive reflection test (CRT; closely aligned to Primi et al., 2016), and
the five financial literacy questions proposed by Lusardi and Mitchell (2011). All additional
questions are listed in Appendix C.

At the end of the experiment, for each subject, one of the six selling decisions was randomly
drawn by the computer to be payoff-relevant. We randomly selected one subject in each ses-
sion for whom, in addition, one of the twelve static choices was randomly chosen to be payoff-
relevant. Subjects were further rewarded for correctly answering CRT and financial literacy
questions (1 Taler per question), and they received an additional e4 for their participation.

We conducted 5 sessions with a total number of n = 158 subjects. The sessions took place in
January 2020 in the experimental laboratory at the University of Cologne. The experiment was
conducted using the software oTree (Chen et al., 2016) and participants were invited via ORSEE
(Greiner, 2015). The experiment lasted for around 45 minutes on average. Subjects earned on
average slightly less than e15, with earnings ranging from e4 to e117.

5.2 Implementation and Discussion of the Design

In this subsection, we provide additional information on the implementation of the experiment,
and we discuss in how far our design choices are essential given the objectives of our study.

Explanation of the process. Tomake the definition of the process easily accessible for subjects,
we followed a mostly visual approach. In particular, we did not confront subjects with the
differential equation that defines an ABM. Instead we simply told subjects the following:

“In this experiment you will see assets of varying profitability. How profitable an asset is in
the long run is described by the drift of the asset. The drift denotes the average change in the
value of the process per second.

A positive drift implies that the asset will increase in value in the long run, while a negative
drift implies that the asset will decrease in value in the long run. Notice that the value of the
asset varies. Hence, even an asset with a negative drift sometimes increases in value.”
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To get some understanding of the process and its drift, subjects were presented with ex-
emplary sample paths from three processes with different drifts.10 Subjects were told that the
processes they would see in the experiment differ only in their drift. In particular, we told them
that all processes have in common that they are non-negative and absorbing in zero.

Finally, to make sure that subjects really understood the stochasticity of an ABM (without
confusing them by introducing a formal notion of variance), we told them that

“Independent of the drift, the value of the asset can, in principle, become arbitrarily large.
The probability that the asset’s value indeed becomes very large is the smaller the more neg-
ative the drift is. But even an asset with a very negative drift can attain a very large value.”

This may raise the concern that subjects could think (at least if they did not carefully read
the previous part of the instructions, stating that a negative drift gives, on average, a decrease in
value) that even assets with negative drifts are on average a profitable investment. In this case,
the total of thirteen sample paths that subjects see for each drift before making their selling
decision should give subjects a rough understanding of the expected value of the process.

We regard this part of the instructions as particularly important since the predictions of salience
theory rely on the assumption that subjects understand the potential skewness induced by stop-
loss and take-profit strategies with a large upper stopping threshold. A translation of the full
screen-by-screen instructions is provided in Appendix C.

Features of the process. Tomake our theory testable, we deviate from Ebert and Strack (2015)
in two ways: First, since it is impossible to implement a process that can run forever with prob-
ability one, we implemented — similar as Heimer et al. (2023) — a finite expiration date. Alter-
natively, we could have implemented a random termination rule, according to which, at time
t, the asset is automatically sold with probability ωt ∈ [0, 1]. A finite expiration date makes
a theoretical analysis of stopping behavior feasible, while with a random termination rule the
probability distribution associated with a given stop-loss and take-profit strategy would not be
tractable anymore. A finite expiration date is also easier to explain to the subjects, which we
regard — given the complexity of the experiment — as a major advantage. Second, to ensure
incentive-compatability, wemake the process absorbing in zero.11 We further restrict the drift of
the process to be non-positive because processes with a positive drift do not allow us to separate
between the predictions of different models such as EUT, CPT, and salience theory.

Duration of the Process. A potential concern of our experimental design is that the process
only runs for 10 seconds, which is significantly shorter than the time horizon of our motivating
examples such as stock trading or job search. However, during the 10 seconds processes already
change considerably, and this rather short time span makes it easy to visually follow the devel-
opment of the process. Notably, skewness both intuitively and theoretically affects short- and

10The sample paths we used in the instructions are exemplary for these processes in the sense that the final values
after 10 seconds are 120 (for µ = 2), 100 (for µ = 0), and 80 (for µ = −2), respectively. All subjects saw the exact
same sample paths in the instructions.

11In principle, we could have implemented losses up to the size of an endowment that subjects received at the
beginning of the experiment. But even then we would have needed to bound the process from below.
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long-run behavior likewise. Hence, abstracting from concerns about reaction times (which are
discussed below), skewness effects can be studied with short and long processes alike. Notably,
subjects can pause the process at any time and thus slow down their decision making. We view
the short duration of the process even as an advantage as it allows subjects to stay focused on
the task which would become increasingly difficult for longer horizons.

(Approximately) Continuous time. It is not feasible to implement a truly continuous process.
Instead, we update the process every tenth of a second by drawing from a normal distribution
with mean µ and variance ν2. This way the problem of whether to stop after s seconds in our
experiment is equivalent to that of stopping an ABM with drift µ and volatility ν at 10 − s

seconds before the expiration date.12 Moreover, as the process looked smooth, subjects could
never know whether and when only a few time periods were left. This design feature is crucial
because it allows subjects to select a strongly skewed return distribution even near the expiration
date.13 This way our experimental implementation fits well to the continuous time process in
our model. Our experimental setup also closely approximates many real live situations where
investor or gamblers can always choose strongly skewed return distributions.

Restriction of the choice set. Subjects could choose among all stop-loss and take-profit strate-
gies.14 This design choice was made based on both practical and theoretical considerations.
First, we need an experimental design that allows us to learn something about the actual strate-
gies that subjects choose. When simply providing subjects with a STOP-button, so that they
could implement any strategy, we would not learn anything beyond realized stopping times.
Stop-loss and take-profit strategies are not only easy to elicit but also enable subjects to choose
highly skewed return distributions. This allows us to study the role of skewness in stopping
problems. Second, stop-loss and take-profit strategies are highly relevant in practice, which is
reflected in the large interest that this type of stopping strategy has attracted in the economics
literature (e.g. Xu and Zhou, 2013; Ebert and Strack, 2015; Fischbacher et al., 2017; Heimer et al.,
2023).

Non-binding strategies and costless adjustments. Weallowed the subjects to costlessly adjust
the stop-loss and take-profit thresholds over time: subjects could stop the process at any time,
adjust one or both thresholds, and then continue the process. Moreover, the chosen strategies
were non-binding in the sense that, once the price of the asset reached either threshold, subjects
could decide whether to really sell the asset at this price or whether to adjust the thresholds and
continue the process. Again we made both design choices for practical and theoretical reasons.

12Subjects could really implement any combination of stop-loss and take-profit thresholds they like. For concise-
ness, assume that Xt = 100, and a subject would like to stop either at 110 or 99. If in the next step the process was
updated to say 98, the subject is still paid according to his chosen stop-loss threshold of 99 (unless he revises his
strategy to continue gambling). The same is true in case the process “jumps” above the take-profit threshold.

13This is not possible in the discrete-time setup in Barberis (2012) or the experimental setup in Heimer et al.
(2023).

14We intentionally designed the decision screen, where subjects set a single upper and a single lower threshold
(see Figure 1), in a way that makes it hard for subjects to visualize a strategy that does not fall into the class of stop-
loss and take-profit strategies. But, even if subjects adopted other strategies, the test of our main theoretical result
— namely, Theorem 1 — would still be valid, as here we did not impose any restriction on the choice set.
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First, if either strategy adjustments were costly or if the strategies were binding, subjects
could partially commit to a strategy. While the commitment effect of costly strategy adjustments
is obvious, binding strategies introduce partial commitment when subjects anticipate that they
will not be able to adjust their strategy fast enough; namely, before the process hits a threshold.
In our main real-world examples, such as selling an asset and gambling in a casino, investors or
gamblers have (at best) very limited commitment power (as also demonstrated byHeimer et al.,
2023, using brokerage data). Third, since subjects have a non-zero reaction time, non-binding
strategies reduce noise in measuring the intended stopping time. Preventing this kind of noise
seems particularly important, as it would be asymmetric —making stopping disproportionally
more likely than non-stopping — and hard to model. This improves the fit between our exper-
iment and our model, where stopping results from the unavailability of an attractive threshold
stopping strategy. In the model, the agent chooses infinitely quick in continuous time, which is
not feasible for the experimental subjects. However, upon the process hitting one of the thresh-
olds subjects can take as much deliberation time as they need to figure out whether they want
to continue gambling.

Importantly, even though strategy adjustments are costless, the exact thresholds are impor-
tant and should be carefully set by the subject right from the beginning. The stop-loss threshold,
for instance, gives a lower bound on the value that the process can reach and, therefore, should
not be set below the level that the subject would not want to undercut. Likewise, the take-profit
threshold should not be set too high, as otherwisemoderate gains cannot be cashed in. Since the
value of the process changes in (almost) continuous time, but subjects are not able to adjust the
thresholds in continuous time, choosing the “right” thresholds to begin with is important. Sub-
jects could, however, start with bounds that are tighter than the ones they actually want to play
with, and plan to adjust them once one bound is hit. As this, however, involves an extra effort
without any benefit, we would not think such behavior is a dominant force in our experiment.

Indicators of naïvete. When assuming a fixed expiration date and restricting the choice set
to all stop-loss and take-profit strategies, we cannot interpret adjustments of the initial strategy
as time-inconsistent behavior and thus as an indication of naïvete, since the remaining time
until the expiration date conveys payoff-relevant information. Looking at processes with a non-
positive drift, however, allows us to test the naïvete assumption within the salience framework.

A sophisticated salient thinker differs from her naïve counterpart in that she anticipates her
future selves to act in a different way than her present self does, which she takes into account
when making her stopping decision. A sophisticated salient thinker who lacks commitment
then behaves as if she was playing a game with her future selves (e.g., Karni and Safra, 1990).
To solve this game, we adopt the equilibrium concept of Ebert and Strack (2018), according to
which a given stopping strategy constitutes an equilibrium if and only if at every point in time
it is optimal to follow this strategy, taking as given that all future selves will do so.

As we show in Appendix B, a sophisticated salient thinker, who lacks commitment and
chooses from the set of all stop-loss and take-profit strategies, does not start any process with
a non-positive drift. Consequently, (partial) naïvete is a necessary assumption to rationalize
gambling in the context of our experiment within the salience framework.
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5.3 Experimental Predictions

We now state the precise predictions of salience theory that guided our experimental design.
We slightly deviate from our pre-registration, which was based on the salience model with a
linear value function: due to the weakly concave value function, Prediction 2 differs from what
was pre-registered, while the remaining predictions are identical to the pre-registered ones.

At its core, our dynamic salience model is built to explain skewness-seeking behavior in dy-
namic choices under risk. Since subjects are restricted to play stop-loss and take-profit strategies
in our experiment, we hypothesize (based on Proposition 2) that they play loss-exit strategies.
This prediction is not shared by EUT, but by other models on skewness seeking such as CPT
and models on disappointment aversion.

Prediction 1. Conditional on not selling the asset, subjects choose a loss-exit strategy.

The main theoretical contribution of our model, relative to existing models on skewness
effects, is that it can rationalize gamblingwithmoderately negative expected valueswhile ruling
out that agents accept any sufficiently skewed gamble regardless of how unfair it is. Therefore,
our model also makes two predictions on the relation between the drift of the process and the
subjects’ decisions to start gambling.

Prediction 2. If µ = 0, subjects might start to gamble, and they might stop before the expiration date.

Prediction 3. The share of subjects selling the asset immediately monotonically decreases in the drift.

By Corollary 1, salient thinkers may or may not start to gamble. Due to the complicated
cumulative distribution function that emerges from our process with a finite expiration date
and the play of stop-loss and take-profit strategies (see Lemma 2 in den Appendix), we cannot
formally prove that in-between stopping is possible. But with the help of simulations, we can
give suggestive evidence that salient thinkers that start to gamble need not gamble until the
expiration date. The reason for this is that hitting some fixed bounds becomes less likely as
time passes, making the process’s distribution more symmetric and therefore less attractive for
a salient thinker. We thus obtain Prediction 2. Prediction 3 directly follows from Proposition
3. These predictions distinguish our model from EUT with a concave utility function, which
does not yield Prediction 2. It also distinguishes our model from CPT as modelled by Ebert and
Strack (2015) aswell as frommodels on disappointment aversion, both ofwhich do neither yield
Prediction 2 nor Prediction 3. Therefore, we regard it as important to test these predictions, even
if they are very intuitive.

Lastly, since we extend a theory of “static” choice under risk to a dynamic setup, we are
interested in the empirical relationship between a subject’s attitude toward static and dynamic
risks. If salience is indeed the psychological mechanism underlying our results, it should co-
herently explain behavior revealed in static and dynamic choices. As we show in Appendix D,
a salient thinker chooses a binary lottery, with a fixed expected value and a fixed variance, over
the safe option paying its expected value if and only if the lottery’s skewness exceeds a certain
threshold. By Proposition 2, this preference for positive skewness is also what drives a salient
thinker’s stopping behavior. We therefore classify both static and dynamic choices into being
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skewness-seeking or not. We say that a static choice is skewness-seeking if the subject chooses
a right-skewed lottery over the safe option or the safe option over a left-skewed or symmetric
lottery (see Table 2 in Appendix C for the exact lotteries and classification). We further clas-
sify a stopping strategy as being skewness-seeking if it is a loss-exit strategy and, thus, induces
a right-skewed return distribution. Based on Proposition 2, we expect a positive correlation
between the share of skewness-seeking choices in static and dynamic decisions.

Prediction 4. The share of skewness-seeking choices by a subject in the static decisions is positively
correlated with the share of loss-exit strategies this subject chooses in the dynamic decisions.

This prediction is not shared by any of the alternativemodels thatwediscuss throughout this
paper, either because they do not predict skewness seeking (as EUT and reference-dependent
preferences without probability weighting) or because they cannot explain the heterogeneity
in gambling behavior that we observe (as it is the case for CPT and models of disappointment
aversion).

6 Experimental Results on Dynamic Gambling Behavior

We first describe our data. Subsequently, we present our main experimental results, as well as
evidence on how subjects revise their strategies over time, andwe discuss in how far this speaks
to the salience mechanism that drives our predictions on stopping behavior. Finally, we present
exploratory results on disposition-effect-like behavior, and on the role of cognitive skills.

6.1 Data and Descriptive Statistics

For all subjects and all processes, our data includes the choice whether to start the process as
well as all chosen stop-loss and take-profit strategies (consisting of an upper bound and a lower
bound). We also record the timeswhen each strategywas chosen and the value of the process at
each point in time. From these values, we can calculate at which time, if ever, subjects stopped
a process, as well as the distance between the two bounds and the process at each point in time.

Table 1 shows descriptive statistics for the data from our experiment. We can see that the
share of subjects who sell the asset immediately increases as the drift becomes more negative.
The share of subjects who do not sell the asset before it expires and the average time the asset
was held decreases as the drift becomes more negative. Moreover, the upper bounds are, on
average, further away from the current value of the process than the lower bounds for all drifts.
The termination value also decreases with the drift except for the comparison between the drifts
-1 and -2. The higher termination value for a drift of -2 is likely driven by the higher fraction of
subjects selling the asset immediately (i.e., at a value of 100).
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Drift: 0.0 -0.1 -0.3 -0.5 -1.0 -2.0

% Sold Immediately 5.70% 9.49% 13.29% 22.15% 27.22% 41.14%
% Never Sold 18.99% 8.86% 9.49% 5.06% 3.80% 1.27%
Termination Value 95.45 92.34 87.98 81.89 73.97 82.74

(40.19) (38.99) (33.63) (32.59) (34.03) (26.70)
Stopping Time 6.31 5.03 3.77 2.99 2.04 0.74

(3.72) (3.69) (3.72) (3.59) (3.16) (1.85)
Upper Bound 136.92 133.57 124.97 124.93 122.64 122.14

(27.99) (28.47) (29.51) (25.22) (26.63) (26.80)
Lower Bound 71.82 75.88 68.40 71.62 66.42 77.75

(31.23) (33.82) (31.38) (33.15) (32.24) (30.04)
Distance Lower Bound to Value 19.02 16.80 19.38 18.52 19.99 14.94

(18.85) (17.80) (20.61) (20.33) (22.52) (21.07)
Distance Upper Bound to Value 33.76 28.86 26.74 24.55 25.47 24.99

(27.74) (27.02) (22.40) (25.98) (27.02) (31.30)

Table 1: The table shows descriptive statistics for our experimental data. The values without parentheses
are the means. The values in parentheses are the standard deviations. Each column shows data for one
drift. “% Sold Immediately” is the percentage of subjects that sold the asset immediately and hence never
started gambling. “% Never Sold” is the percentage of subjects who held the asset until the expiration
date. The stopping time is either the time at which a subject sells the asset after it hits one of the bounds
or it equals the value of 10 seconds, the time after which the asset process expires and the asset is sold
automatically. The values for the upper and lower bounds include one data point for the initial bounds set
by a subject before he can start the process and a data point for each time a bound was adjusted. Similarly,
the variables “Distance Upper/Lower Bound to Value” include the (absolute) distance between a bound
and the current value of the process every time a bound is adjusted.

6.2 Main Test of our Salience Predictions

First, we show that, consistent with Prediction 1, a majority of subjects initially chooses a loss-
exit strategy. This result on initial strategies holds across all the different drifts that we consid-
ered (see Figure 12 in Appendix E).

Result 1 (a). Conditional on not selling immediately, 65% of initial strategies are loss-exit strategies.

We also perform a t-test with standard errors clustered at the subject level and confirm that
the share of subjects who initially choose loss exit strategies is significantly above 50%, implying
that, on average, subjects are skewness seeking.

When aggregating all the strategies a subject has chosen throughout the experiment (includ-
ing both initial and revised strategies), we observe that amajority of the subjects predominantly
chooses loss-exit strategies and that 17% of the subjects pick exclusively loss-exit strategies (see
Figure 3 for the distribution across all subjects). This gives the second part of our result on
chosen strategies:

Result 1 (b). For themedian subject, 73% of all strategies chosen throughout the experiment are loss-exit
strategies.

Overall, these results suggest that themajority of subjects are skewness seeking as predicted
by ourmodel. The fact that not all selected strategies are right-skewed can partially be explained
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Figure 3: The figure depicts the empirical distribution of the share of loss-exit strategies across subjects.
The share is calculated on the subject level by taking all strategies, including both initial and revised
strategies, aggregating across different drifts, and determining the percentage of those strategies that are
loss-exit strategies.

by inherent noise in experimental data collection, and partially by subject heterogeneity (mean-
ing that not all subjects are salient thinkers).

Our next result — as depicted in Figure 4— is a monotonic relationship between the drift of
the process and a subject’s stopping behavior. Specifically, subjects do gamble (even if the drift
is negative), but their behavior is sensitive to the drift of the process. At the hand of Figure 4,
we will successively discuss the results corresponding to Predictions 2 and 3.
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Figure 4: The figure depicts the smoothed empirical cumulative distribution functions of stopping times,
one for each of the different drifts.

To address Prediction 2, we look into stopping behavior for the fair process with zero drift.
Around a fifth of all subjects hold the asset with a drift of zero until the expiration date, while
only about 5% of all subjects sell the asset with a drift of zero immediately. Moreover, 65% of
the subjects hold this asset for more than 5 of the maximal 10 seconds. We summarize:
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Result 2. The median subject holds the fair asset with zero drift for 7.65 out of 10 seconds, and around
19% of the subjects hold the fair asset until the expiration date.

While salience theory does notmake a precise prediction onwhen subjects stop a fair process
with zero drift (see Prediction 2), Result 2 is clearly inconsistent with both, EUT with a concave
utility function — which predicts that subjects sell the asset immediately — as well as with
CPT as modelled by Ebert (2015) — which predicts that subjects will hold the asset until the
expiration date.

Next, we investigate how the drift affects a subject’s decision whether to start a process and,
after starting, when to stop it. The share of subjects selling immediatelymonotonically decreases
in the drift of the process (see the right panel of Figure 10 in Appendix E). Drift-sensitive stop-
ping behavior is consistent with Prediction 3: estimating a linear probability model indicates
that increasing the drift by one unit reduces the average probability of selling immediately by
17.1 p.p. (p-value < 0.001, standard errors clustered at the subject level).

Result 3 (a). The share of subjects selling immediately monotonically decreases in the drift of the process.

This result is also clearly inconsistent with EUT and CPT, both of which predict that the
share of subjects who sell the asset immediately is constant in the drift, either because subjects
should always sell immediately (EUT) or always gamble until the expiration date (CPT).

Figure 4 further shows that not only the share of subjects selling the asset immediately is
monotonic in the drift, but that the whole distribution of stopping times shifts upward in the
sense of first-order stochastic dominance as the drift increases.15

Result 3 (b). Subjects stop earlier for processes with more negative drifts.

These results provide valuable insights into the strength of skewness effects. In our model,
agents are intrinsically risk averse, so that they will not start a process with a non-positive drift
unless they can implement a strategy that induces a skewed outcome distribution. When decid-
ing whether to start a process with a drift of zero, subjects face a trade-off between the variance
of the return distribution — which they dislike — and the skewness of the return distribution
— which they can select with the right bounds and which they like. We find that, interpreted
through the lens of our model, for 95% of subjects skewness seeking is strong enough to make
them gamble. But the more negative the drift of the process is, the stronger subjects’ skew-
ness seeking needs to be to render gambling attractive. Hence, our finding that the share of
subjects who start to gamble monotonically decreases in the drift of the process, substantiates
heterogeneity in the strength of skewness seeking.

We further look into whether subjects hold the process until it expires. Conditional on start-
ing, most subjects do not hold the processes until the expiration date. Even for the fair process
only 19% do so, which is consistent with salience theory but conflicts with models such as CPT
that predict that agentswill never stop gambling regardless hownegative the drift of the process
is.

15This is only violated for the processes with a drift of µ = −0.1 and µ = −0.3 in very few points, so that these
violations are not even visible in the smoothed CDFs depicted in Figure 4.
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Finally, we study whether skewness seeking in static and dynamic decisions is related. As
depicted in Figure 5, subjects behave quite consistently in the static and the dynamic decision
problems. To test for the link between static and dynamic skewness seeking, we regress the
share of loss-exit strategies amongst all strategies chosen throughout the six dynamic problems
on the share of skewness-seeking choices in the twelve static problems. We find a positive and
statistically significant correlation, which gives our fourth result:

Result 4. The share of skewness-seeking choices by a subject in the twelve static decisions is positively
correlated with the share of loss-exit strategies this subject chooses in the six selling decisions.

β = 0.39, p < 0.001
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Figure 5: The figure depicts the relationship between static and dynamic gambling behavior. We further
provide the estimated slope-coefficient of the depicted linear regression, which is significantly larger than
zero. The data points are scattered for illustrative purposes.

One might be concerned that Result 4 conflicts with the “discrepancy” between static and
dynamic risk taking documented inHeimer et al. (2023). Heimer et al. (2023), however, compare
the willingness to take risk when a fair coin is flipped once (i.e., in a static choice) — which
induces a symmetric distribution of returns — and when a fair coin is flipped repeatedly (i.e., in
a dynamic choice)— inwhich case the right stopping strategies allow to create very right-skewed
distributions of returns. In other words, while we study the relationship between skewness
seeking in static and dynamic decisions, Heimer et al. (2023) look at the difference in behavior
between static and dynamic problems that results from the fact that the latter enables subjects
to choose a skewed distribution of returns.

6.3 On the Salience-Mechanism: Frequency andDirection of StrategyAdjustments

Consistent with our model, strategy revisions are ubiquitous and follow precise patterns. Al-
together, (i) more than 93% of the subjects (147 out of 158) revised their initial strategy in at
least one of the six selling tasks, (ii) conditional on starting, subjects adjust their strategies 1.6
times per task, and (iii) about 70% of the strategy adjustments happen in an attempt to prolong
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gambling after the process has hit one of the previously chosen thresholds. Moreover, if a sub-
ject chooses a loss-exit strategy and the process hits a threshold, the subject is — conditional on
not stopping the process — more than six times as likely to again choose a loss-exit instead of
a gain-exit strategy (see the left table of Figure 13 in Appendix E),16 which is consistent with
Prediction 1.

Conditional on not selling the asset immediately, around 45% of the processes are stopped
“later” than when the subject initially planned to stop the process; that is, 45% of the processes
pass (at least) one of the initial thresholds without being stopped. Notably, the share of pro-
cesses being stopped later than initially planned monotonically increases in the drift of the pro-
cess, from 20% (for the most negative drift) to around 54% (for zero drift). This suggests that
subjects revise their strategies, as predicted by ourmodel, and the fact that this behavior is more
pronounced for processes with a less negative drift is again in line with our salience model’s
prediction that subjects are sensitive to the drift in a “reasonable” way.

We further observe that 35% of the processes fall below the initial stop-loss threshold, but
only 12% of the processes rise above the initial take-profit threshold. Taken together these re-
sults indicate exactly the type of strategy revisions that our model (and also the model by Ebert
and Strack, 2015, in an extreme form) builds on in order to explain excessive gambling: subjects
choose loss-exit strategies and thereby positively skewed return distributions, and then adjust
strategies as soon as the stop-loss threshold is hit in order to continue gambling with a newly
chosen loss-exit strategy. In sum, the findings on strategy adjustments indicate that our model
gives a quite accurate description of the mechanism underlying our main experimental results.

6.4 On the Disposition to Stop and the Role of Cognitive Skills

Subjects reveal a disposition effect. As alluded to before, more processes fall below the ini-
tial stop-loss threshold (namely, 35%) than rise above the initial take-profit threshold (namely,
12%). Keeping the asset “too long” (compared to the subject’s initial plan) when the process
has decreased in value rather than increased in value is reminiscent of the disposition effect,
whereby assets are rather sold in the gain domain and rather held in the loss domain.

Another test for the disposition effect is to compare the likelihood of selling assets that have
gained a particular amount to that of selling assets that have lost exactly the same amount: by
the disposition effect, the former assets should be more likely to be sold than the latter, which is
precisely what we find. Those subjects, who have revised their initial strategy for a respective
process at least once, are, on average, more likely to sell a process at value 100 + x than one
at value 100 − x (see Figure 6). To make selling decisions comparable, we here consider only
processes with a drift of zero, for which gains and losses are equally likely.17

As we discussed in Section 4.3, the disposition effect is consistent with salience theory, but
not with the standard specification of the saliencemodel that the salience literature has adopted

16Strategy adjustments conditional on not hitting a threshold follow a similar pattern. Suppose that in the mo-
ment of pausing the process the currently played strategy is a loss-exit strategy. Then, all of our subjects have selected
another loss-exit strategy and no one has switched to a gain-exit strategy (right table in Figure 13 in Appendix E).

17A similar picture also arises if all selling decisions including those for processes with a negative drift are taken
into account; due to losses beingmore likely for negative drifts, however, the interpretation of the respective findings
is less clear, which is why we focus on the fair processes here.
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Figure 6: The figure depicts the smoothed empirical CDF of stopping at a given distance to the initial
value of the process, separately for processes that have gained and that have lost in value. We consider
only fair processes with a drift of zero for which the initial strategy was adjusted at least once.

so far.

Cognitive skills matter. Below-median subjects in terms of cognitive skills — as measured
by the sum of correct answers to the modified CRT and the financial literacy questions — are
particularly likely to gamble in our experiment. For instance, for the process with a drift of zero,
the share of below-median subjects holding the asset until the expiration date is twice as large
as the share of above-median subjects doing so (see Figure 11 in Appendix E). Notably, both
the below- and above-median subjects support Prediction 3: both are responsive to a change in
the drift of the process.

6.5 Limitations of the model in explaining the data

While the majority of subjects chooses mostly strategies inducing right-skewed return distribu-
tions, strategies inducing left-skewed return distributions are, unlike what our model predicts,
also chosen. This can be explained by noise in the data and by heterogeneity in subjects’ sus-
ceptibility to salience.

Another issue is that, despite the good fit of our model and our data, we cannot conclusively
show that salience indeed is themechanism that drives our results. Given the strong correlation
between skewness effects revealed in static and in dynamic choices, there arguably is one cog-
nitive mechanism that drives all of these skewness effects, but this doesn’t have to be salience.
In any case, we think of the model as a useful "as if" model.
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7 Discussion of Alternative Models

7.1 Expected Utility Theory

In order to explain basic findings in choice under risk — such as an aversion toward symmetric
mean-preserving spreads — EUT needs to assume a strictly concave utility function (see, e.g.,
Bernoulli, 1738; Rothschild and Stiglitz, 1970). Under this assumption, however, EUT predicts
that all assets with a non-positive drift will be immediately sold, and it, thus, cannot explain
why subjects start to gamble in our experiment (see Result 2 in Section 6).

In order to rationalize Result 2 via EUT, we would need to assume that the utility function is
convex over at least some range around the initial value of the asset. But, even if wewould allow
for a completely flexible utility function, which switches back-and-forth from being concave
to being convex, EUT cannot explain the skewness-dependence of risk attitudes, as elicited in
the static choices between a binary risk and its expected value: here, subjects seek, for different
outcome levels, sufficiently right-skewed risks, but avoid left-skewed risks (see Figure 14 in
Appendix E). While EUT could, in principle, rationalize this behavior for one outcome level via
a utility function that is concave first and then becomes convex, it cannot do so for multiple
outcome levels, as the inflection point from concave to convex would have to change with the
outcome level. Salience theory, in contrast, predicts skewness-dependent risk attitudes for any
outcome level (see Appendix D and Dertwinkel-Kalt and Köster, 2020), and is thus consistent
with the data. Moreover, EUT — in contrast to salience theory — does in general not explain
why subjects prefer loss-exit strategies over gain-exit strategies (Result 1 in Section 6). In sum,
EUT cannot coherently explain our findings on static and dynamic risk attitudes.

7.2 Cumulative Prospect Theory

Abstracting from a finite expiration date, Ebert and Strack (2015) have shown that, under em-
pirically weak assumptions on the probability weighting function, a CPT-agent will never stop
an ABM, irrespective of how negative its drift is. This stark never-stopping result follows from
the fact that the preference for positive skewness induced by common CPT-specifications is so
strong that the naïve CPT-agent can always find a stop-loss and take-profit strategy that is more
attractive than not starting. As we numerically show in Appendix F, at the example of the rep-
resentative CPT-agent proposed by Tversky and Kahneman (1992),18 the never-stopping result
extends to processes with a finite expiration date. Consequently, common specifications of CPT
can neither rationalize the fact that subjects stop a process with zero drift before the expiration
date (i.e., Result 2) nor that stopping behavior is sensitive to the drift of the process (i.e., Result
3).19 As a consequence of this never-stopping result, CPT is also inconsistent with the disposi-

18It is easily verified that the stark never-stopping result extends to finite expiration dates also for other common
CPT-specifications. But, for expositional convenience and in line with the related literature (Barberis, 2012; Heimer
et al., 2023), we focus on the representative CPT-agent based on the estimates by Tversky and Kahneman (1992).

19CPT belongs to the class of rank-dependent utility models (see, e.g., Quiggin, 1982), which do not assume in
general, however, that behavior is reference-dependent and affected by loss aversion. As the never-stopping result
of CPT does not rely on either reference-dependence or loss aversion, it extends to a larger class of models within
the RDU-family (as shown by Duraj, 2020). But, due to the flexibility of rank-dependent utility models, we do not
obtain general predictions regarding the stopping behavior of an RDU-agent in our setup.
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tion effect in a setting like ours (or the one by Ebert and Strack, 2015, as they argue). CPT can,
however, also account for Result 1: because a CPT-agent overweights the tails of a probability
distribution, he likes the right-skewed distribution generated by loss-exit strategies (this has
been also shown in Barberis, 2012; Ebert and Strack, 2015; Heimer et al., 2023).20

7.3 Reference-Dependent Preferences without Probability Weighting

Barberis and Xiong (2009, 2012) propose an explanation of the disposition effect based on a
version of prospect theory without probability weighting, according to which gains and losses
are experienced at the level of an individual asset in the moment of selling it.21 Moreover,
Barberis and Xiong (2012) derive results that are seemingly similar to the drift-sensitivity of a
naïve salient thinker that we establish in this paper. This apparent similarity, however, is driven
by the different setup that they analyze: to establish their result, Barberis and Xiong assume,
in particular, that (1) upon selling an asset the agent can immediately reinvest his wealth in
another asset, (2) when selling an asset the agent pays positive transaction costs, and (3) the
time-horizon is sufficiently long for discounting to play an important role. Our experimental
design shares neither of these features, so that their results cannot be applied to our setting.
Using a stylized version of the model by Barberis and Xiong (2012), we demonstrate in the
following that their realization-utility approach, which has found some experimental support
(e.g., Imas, 2016), cannot account for our experimental findings.

Without loss of generality, we abstract from a finite expiration date and from discounting.
Adapting the model in Barberis and Xiong (2012) to our setup, we assume that the agent’s
utility is given by the sum of an asset’s net present value and her realization utility from selling
the asset, where the latter is given by a (piece-wise) linear function u(·) defined as follows:
u(x) = x− r if x ≥ r and u(x) = λ(x− r) if x < r for some loss-aversion parameter λ ≥ 1 and a
reference point r = x0.22 The agent’s utility derived from selling the asset at time t is equal to

Xt︸︷︷︸
net present value

+ u(Xt).︸ ︷︷ ︸
realization utility

Now consider a threshold stopping time τa,b with a < x0 < b, and denote by p = p(a, b, x0)

the probability that the process is stopped at the stop-loss threshold a. The agent sells the asset
immediately if and only if, for any such threshold stopping time, it holds that

pa+ (1− p)b︸ ︷︷ ︸
expected net present value

+ pλ(a− x0) + (1− p)(b− x0)︸ ︷︷ ︸
expected realization utility

≤ x0,

20The most striking difference between salience theory and alternative approaches — such as EUT and CPT— is
that it predicts behavior to be context-dependent in the sense that the evaluation of a given option depends on the
alternatives at hand. We ran an additional (pre-registered) experiment that documents context-dependent stopping
behavior in line with salience theory. To focus on our main results, and not to disrupt the flow of the main text, we
decided to relegate this additional experiment to Appendix G, however.

21Barberis and Xiong (2009) show that other, more common reference point specifications (such as annual gains
and losses) do not allow CPT to explain the disposition effect.

22Precisely, the case of λ = 1 refers to Eq. (7) in Barberis and Xiong (2012), while λ > 1 corresponds to Eq. (18)
in their paper.
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or, equivalently,

2(1− p)(b− x0) ≤ (1 + λ)p(x0 − a). (5)

A sufficient condition for Eq. (5) to hold is that (1 − p)(b − x0) ≤ p(x0 − a) or, equivalently,
E[Xτa,b ] ≤ x0, which is satisfied for any process with a non-positive drift. We conclude that an
agent with realization utility à la Barberis and Xiong (2012) would immediately sell any asset
in our experiment; that is, their model can neither account for Result 2 nor Result 3.23

More generally, the preceding analysis highlights that some form of non-linear probability
weighting is necessary to explain our results on skewness seeking, not only in the dynamic
selling decisions, but also in the static choices, which we analyze in Appendix E (see Figure
14). The former point is made in an informal way also in Heimer et al. (2023). Adding non-
linear probability weighting to the model by Barberis and Xiong (2012) would yield a model
that is essentially equivalent to the ones studied in Barberis (2012) or Ebert and Strack (2015),
which we have already discussed in detail in the previous subsection.

7.4 Disappointment Aversion

Gul (1991) proposes a theory of disappointment aversion to explain the Allais paradox, in par-
ticular, the certainty effect.24 The model can, in principle, rationalize skewness seeking and
thereby gambling in the context of our experiment (Duraj, 2020, Proposition 4). But, as we will
formally argue in the following, under the assumptions necessary to explain skewness seeking,
it also predicts that subjects will not stop a process with zero drift before the expiration date,
which is inconsistent with Result 2.

If we abstract from a finite expiration date (i.e., if T = ∞ holds), a disappointment-averse
agent values the random variable induced by a threshold stopping time τa,b at

V (Xτa,b) =
p(1 + β)

1− p+ pβ
u(a) +

1− p

1− p+ pβ
u(b),

where u is a classical utility function and β > −1 captures the agent’s disappointment aversion.
As illustrated in Gul (1991), we need to assume β > 0 in order to rationalize puzzling

behavior like the Allais paradox. But, given that β > 0, the only way to rationalize a preference
for sufficiently right-skewed risks is to assume a convex utility function u(·). Precisely, with a
concave utility function, the disappointment-averse agent would reject any fairly priced risk,
and he would thus sell any asset with a non-positive drift immediately, which contradicts both
our results on dynamic (i.e., Result 2) and static choices (see Figure 14 in Appendix E).

So, let us assume not only that β > 0, but also that u(·) is convex. As in our experiment, we
23As the setup in Barberis and Xiong (2012) shows substantial differences to our setup—for instance, asset selling

goes along with substantial transaction costs—this is no contradiction to their Figure 1. This does also not change if
we use a different variant of their model, namely one where we drop the “expected net present value” term. In that
case, only gain-loss utility prevails, and as losses loom larger than gains a symmetric process (or one with a negative
drift) cannot be attractive.

24Disappointment aversion is a special case of cautious expected utility (Cerreia-Vioglio et al., 2015), which is
so flexible, however, that it can explain basically any kind of stopping behavior, including the stark never-stopping
result predicted by CPT (see Proposition 6 in Duraj, 2020).
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assume that the agent can only choose stop-loss and take-profit strategies. A disappointment-
averse agent stops a process with zero drift at time t, if and only if, for any stopping time τa,b,

u(b)−u(xt)
b−xt

u(xt)−u(a)
xt−a

≤ 1 + β.

Since u(·) is convex by assumption, the left-hand side of the preceding inequality is strictly
increasing in b (and strictly decreasing in a). Again since u(·) is convex, for any fixed a ≥ 0,
the left-hand side approaches infinity, as b approaches infinity. But this implies that, for any
fixed β > 0, we can find a finite b, such that the above inequality is violated. Consequently,
a disappointment-averse agent with a convex utility function never stops a process with zero
drift, which contradicts the fact that a large majority of subjects stop the process with zero drift
before the expiration date (i.e., Result 2). All the preceding arguments carry over to the case of
a finite expiration date. In sum, we conclude that a model of disappointment aversion cannot
coherently explain the findings on skewness seeking in static and dynamic settings.

8 Conclusion

While we find that people take up symmetric gambles if they can obtain skewed return distribu-
tions through the choice of their stopping strategies, theoretical considerations suggest similar
behavior in case the underlying process is skewed itself. On the one hand, even if the under-
lying process is negatively skewed, the return distribution associated with the “right” loss-exit
strategy is again positively skewed (Ebert, 2020). And if the process itself is positively skewed
— which is indeed the case in many real-world applications — our results are likely to be am-
plified.

A first example refers to processes underlying many casino gambles (as discussed in Ebert
and Strack, 2015, Section V) and many asset values, which are not symmetric, but positively
skewed. Skewness seeking, as modelled by salience theory, then suggest that consumers gam-
ble or over-invest all the more, as the skewness created with their stopping strategies is exacer-
bated by the skewness of the process. As an alternative example, we could think of teenagers or
young adults who decide whether to pursue the career of a professional athlete, actor, or mu-
sician. While the probability of actually making it to the professional level is small, it requires
substantial investments of time and other resources to take the shot at becoming a superstar. A
teenager who practices excessively for a particular sport, for instance, might as a result neglect
school or studies, thereby lowering the attainable wage in the likely case that he fails to become
a professional athlete. Now suppose that, as suggested by our model, this teenager adopts the
following strategy: each year, he hopes for a breakthrough, but plans to quit on sports and in-
stead study otherwise. This strategy generates a positively skewed return distribution, which
can be particularly appealing due to the skewness that is inherent to the process of becoming a
superstar. After each failure, however, the teenager revises his plans and decides to try it for one
more year, as this way he can again experience a right-skewed distribution of returns. This idea
of excessively pursuing a career is not only consistent with our model, but it is also supported
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by empirical studies (e.g., Choi et al., 2022; Grove et al., 2021). A similar type of argument ap-
plies to the classical problem of searching for a job, one of our introductory examples from the
classical stopping literature. Here, skewness seeking can explain why people pass on too many
mediocre jobs, thereby forgoing pay over a longer time horizon, in the hope of finding one of
very few outstanding jobs with excellent pay. Also in this example the skewness of the return
distribution that results from the chosen stopping strategy is complemented by the skewness of
the process itself. In sum, skewness seeking can explain time-inconsistent behavior in trying to
reach an elusive goal.
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Appendix A: Proofs

A.1: Preliminary Results on Arithmetic Brownian Motions

Fix an initial wealth level x ∈ R>0 and an expiration date T ∈ R>0. Throughout this section, we
take the perspective of period t = 0 and consider a threshold stopping time τa,b with a < x < b.
Our first result describes the distribution XT∧τa,b conditional on stopping before expiration.

Lemma 1. If µ ̸= 0, then, for any threshold stopping time τa,b with a < x < b, we have

P0[Xτa,b = a] =
exp(−(2µ/ν2)b)− exp(−(2µ/ν2)x)

exp(−(2µ/ν2)b)− exp(−(2µ/ν2)a)
. (6)

If µ = 0, then P0[Xτa,b = a] = b−x
b−a . In particular, an increase in the drift of the process improves the

distribution of Xτa,b in terms of first-order stochastic dominance.

Proof. Fix some a, b ∈ R≥0 with a < x < b. For any threshold stopping time τa,b, we have

P0[Xτa,b = a] =
Ψ(b)−Ψ(x)

Ψ(b)−Ψ(a)
,

where Ψ : R → R, z 7→ Ψ(z) =
∫ z
0 exp

(
−
∫ y
0 2 µ

ν2
dv
)
dy =

∫ z
0 exp

(
−2 µ

ν2
y
)
dy is a strictly

increasing scale function (e.g., Revuz and Yor, 1999, pp. 302). For any µ ̸= 0, we obtain

Ψ(z) =

∫ z

0
exp

(
−2

µ

ν2
y
)

dy =
ν2

2µ

[
1− exp(−(2µ/ν2)z)

]
,

while for µ = 0, we haveΨ(z) =
∫ z
0 1 dy = z, which yields the claim. The last part of the lemma

follows from taking the partial derivative of the right-hand side of Eq. (6) with respect to µ.

Our second result derives the probability of reaching the expiration date, and describes sev-
eral properties of the distribution of XT∧τa,b conditional on stopping at the expiration date.

Lemma 2. (a) The probability of stopping at the expiration date equals

P0[τa,b ≥ T |X0 = x] =

∫ b

a
q(y, T |X0 = x) dy,

where the integrand is given by

q(y, T |X0 = x) =
2 exp

(
µ(y−x)

ν2 − T
2

µ2

ν2

)
(b− a)

∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
.

(b) lima→x P0[τa,b ≥ T |X0 = x] = 0 and limx→b P0[τa,b ≥ T |X0 = x] = 0.

(c) For any stopping time τa,b with a < x < b, the CDF of XT conditional on τa,b ≥ T equals

P0[XT ≤ z|X0 = x, τa,b ≥ T ] =

∫ z

a
exp

(
µ(y−x)

ν2

)∑∞
n=1

{
sin
(

πn(x−a)
b−a

)
sin
(

πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy∫ b

a
exp

(
µ(y−x)

ν2

)∑∞
n=1

{
sin
(

πn(x−a)
b−a

)
sin
(

πn(y−a)
b−a

)
exp

(
−T

2
n2π2ν2

(b−a)2

)}
dy

.

Suppose that a = x− ϵ and b = x+ ϵ′ for some ϵ′ > ϵ > 0.
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(d) If µ < 0, then ∂
∂µP0[XT ≤ z|X0 = x, τa,b ≥ T ] < 0 for any z ∈ [a, b).

(e) If µ = 0, then limϵ→0 P0[XT ≤ x|X0 = x, τa,b ≥ T ] = 0.

Suppose that a = x− ϵ− ϵ′ and b = x+ ϵ for some ϵ > 0 and ϵ′ ≥ 0. In addition, let α ∈ (0, ϵ).

(f) If µ ≤ 0, then P0[XT ≤ x− α|X0 = x, τa,b ≥ T ] ≥ P0[XT > x+ α|X0 = x, τa,b ≥ T ], holding
with a strict inequality whenever µ < 0.

Proof. PART (a). Example 5.1 in Cox and Miller (1977).

PART (b). We prove only the first part here, as the proof of the second part is analogous. To
establish the first part, it is sufficient to show that

lim
a→x

∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
= 0. (7)

As | sin
(
πn(x−a)

b−a

)
sin
(
πn(y−a)

b−a

)
| ≤ 1 and as exp

(
−T

2
n2π2ν2

(b−a)2

)
≤ exp

(
−T

2
nπν2

(b−a)2

)
and as

∞∑
n=1

exp

(
− t

2

nπν2

(b− a)2

)
=

1(
exp

(
t
2

πν2

(b−a)2

)
− 1
) < ∞,

we can take the limit in (7) inside the summation. The claim follows from the fact that sin(0) = 0.

PART (c). Follows immediately from Part (a).

PART (d). Consider a threshold stopping time τa,b with a = x − ϵ and b = x + ϵ′ for some
ϵ′ > ϵ > 0. The CDF of the corresponding random variable Xτa,b∧T is given by

P0[XT∧τa,b ≤ z] =


P0[τa,b < T ] · P0[Xτa,b = a] if z = a,

P0[τa,b < T ] · P0[Xτa,b = a] +
∫ z
a q(y, T |X0 = x) dy if a < z < b,

1 if z = b.

Taking the partial derivative of the CDF at z ∈ [a, b)with respect to the drift of the process yields

∂

∂µ
P0[XT∧τa,b ≤ z] = P0[τa,b < T ] · ∂

∂µ
P0[Xτa,b = a] + P0[Xτa,b = a] · ∂

∂µ
P0[τa,b < T ]

+

∫ z

a

∂

∂µ
q(y, T |X0 = x) dy.

The first two terms in ∂
∂µP0[XT∧τa,b ≤ z] are negative or, at least, non-positive: First, by

Lemma 1, ∂
∂µP0[Xτa,b = a] < 0. Second, because (i) the drift of the process is negative and (ii)

x−a < b−x by assumption, amarginal increase in the drift shifts the distribution of τa,b upward,
so also ∂

∂µP0[τa,b < T ] ≤ 0. Together these two observations imply that ∂
∂µP0[XT∧τa,b ≤ a] < 0.

The remainder of the proof proceeds in two steps: First, we will show that there exists some
ẑ ∈ (a, b] such that ∂

∂µP0[XT∧τa,b ≤ z] < 0 if and only if z < ẑ. Second, we will show that
∂
∂µP0[XT∧τa,b = b] > 0 and, thus, ∂

∂µ

{
1− P0[XT∧τa,b = b]

}
< 0, which in turn implies that ẑ = b.
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1. Step: Using the definition of q(y, T |X0 = x), as provided in Part (a), we obtain

∫ z

a

∂

∂µ
q(y, T |X0 = x) dy =

1

ν2

[ ∫ z

a
yq(y, T |X0 = x) dy − (x+ Tµ)

∫ z

a
q(y, T |X0 = x) dy

]
=

P0

[
τa,b ≥ T,XT ≤ z

]
ν2

[
E0

[
XT |τa,b ≥ T,XT ≤ z

]
− E0

[
XT

]]
.

We distinguish two cases, depending on whether the difference in brackets is positive or not.
If E0

[
XT |τa,b ≥ T,XT ≤ z

]
≤ E0

[
XT

]
, then

∫ z
a

∂
∂µq(y, T |X0 = x) dy ≤ 0, which together with

our observations on the first two terms of ∂
∂µP0[XT∧τa,b ≤ z] implies that ∂

∂µP0[XT∧τa,b ≤ z] < 0.
Otherwise, because E0

[
XT |τa,b ≥ T,XT ≤ z

]
and P0

[
τa,b ≥ T,XT ≤ z

]
are increasing in z, it

follows that
∫ z
a

∂
∂µq(y, T |X0 = x) dy increases in z whenever it is positive. In sum, there exists

some ẑ ∈ (a, b] such that ∂
∂µP0[XT∧τa,b ≤ z] < 0 if and only if z < ẑ, which was to be proven.

2. Step: Now, it is sufficient to show that ∂
∂µP0[XT∧τa,b = b] > 0. For the sake of a contradic-

tion, we assume that P0[XT∧τa,b = b|µ = µ′] ≥ P0[XT∧τa,b = b|µ = µ′′] for some µ′ < µ′′ < 0.
Denote as Mt := max0≤s≤tXs the running maximum of the process. By our assumption

toward a contradiction, it has to be true that, for some t ∈ (0, T ),

P0[Mt ≥ b|Xs > a,∀s ≤ t, µ = µ′] ≥ P0[Mt ≥ b|Xs > a,∀s ≤ t, µ = µ′′];

otherwise, reaching the upper threshold bwould be strictly more likely under the process with
a less negative drift. Recall that, because both P0[Xτa,b = a] and P0[τa,b < T ] (weakly) decrease
with µ, increasing the drift of the process makes it less likely to reach the lower threshold a.
Hence, a necessary condition for our assumption toward a contradiction to hold is

P0[Mt ≥ b|µ = µ′] ≥ P0[Mt ≥ b|µ = µ′′];

that is, at any time t ∈ (0, T ), conditioning on not having reached the lower threshold is more
restrictive for the process with a more negative drift. By the same argument, we can ignore the
fact that the process is absorbing in zero. In this case, by the Reflection Principle and Girsanov’s
Theorem, for an arbitrary drift µ < 0, the distribution of the running maximum,Mt, satisfies

P0[Mt ≥ b] = exp

(
2ϵ′µ

ν2

)[
1− Φ

(
ϵ′ + µt√

tν

)]
+

[
1− Φ

(
ϵ′ − µt√

tν

)]
,

with b = x+ ϵ′ for some ϵ′ > 0 and with Φ being the standard normal CDF (see Example 5.1 in
Cox and Miller, 1977, or Corollary 7.2.2 in Shreve, 2004). Hence, we obtain

∂

∂µ
P0[Mt ≥ b] =

2ϵ′

ν2
exp

(
2ϵ′µ

ν2

)[
1− Φ

(
ϵ′ + µt√

tν

)]
− exp

(
2ϵ′µ

ν2

)
ϕ

(
ϵ′ + µt√

tν

)
+ ϕ

(
ϵ′ − µt√

tν

)
=

2ϵ′

ν2
exp

(
2ϵ′µ

ν2

)[
1− Φ

(
ϵ′ + µt√

tν

)]
+

√
t√

2πν

[
exp

(
(ϵ′ − µt)2

2tν2

)
− exp

(
(ϵ′ − µt)2

2tν2

)]
=

2ϵ′

ν2
exp

(
2ϵ′µ

ν2

)[
1− Φ

(
ϵ′ + µt√

tν

)]
> 0,
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where the second equality follows fromplugging in the density ϕ of a standard normal distribu-
tion. But this implies that P0[Mt ≥ b|µ = µ′] ≥ P0[Mt ≥ b|µ = µ′′] cannot hold; a contradiction.

PART (e). By Part (b), we have limϵ→0

∫ x+ϵ′

x−ϵ q(y, T |X0 = x) dy = 0 and, as a consequence,
also limϵ→0

∫ x
x−ϵ q(y, T |X0 = x) dy = 0. Now, to determine limϵ→0 P0[XT ≤ x|X0 = x, τa,b ≥ T ],

we will apply L’Hospital’s rule. For that, we have to make a few preliminary observations.
First, if the partial derivative ∂

∂ϵq(y, T |X0 = x) exists, then it is given by

∂

∂ϵ
q(y, T |X0 = x) =

ϵ′

(ϵ+ ϵ′)2

∞∑
n=1

{
πn cos

(
πnϵ

ϵ+ ϵ′

)
sin

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}

+
ϵ′ − (y − x)

(ϵ+ ϵ′)2

∞∑
n=1

{
πn sin

(
πnϵ

ϵ+ ϵ′

)
cos

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}

+
Tν2

(ϵ+ ϵ′)3

∞∑
n=1

{
π2n2 sin

(
πnϵ

ϵ+ ϵ′

)
sin

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}
,

and since we have∣∣∣∣ ∂∂ϵq(y, T |X0 = x)

∣∣∣∣ ≤ [ 1ϵ′ + ϵ′ − 2(y − x)

ϵ′2

] exp
(
T
2
πν2

ϵ′2

)
π(

exp
(
T
2
πν2

4ϵ′2

)
− 1
)2

+
Tν2

ϵ′3

exp
(
T
2
πν2

ϵ′2

)(
exp

(
T
2
πν2

ϵ′2

)
+ 1
)
π2(

exp
(
T
2
πν2

4ϵ′2

)
− 1
)3 < ∞,

(8)

it indeed exists. To apply L’Hospital’s rule, we need to compute the limit for ϵ approaching zero:

lim
ϵ→0

∂

∂ϵ
q(y, T |X0 = x) =

1

ϵ′

∞∑
n=1

lim
ϵ→0

{
πn cos

(
πnϵ

ϵ+ ϵ′

)
sin

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}

+
ϵ′ − (y − x)

ϵ′2

∞∑
n=1

lim
ϵ→0

{
πn sin

(
πnϵ

ϵ+ ϵ′

)
cos

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}

+
Tν2

ϵ′3

∞∑
n=1

lim
ϵ→0

{
π2n2 sin

(
πnϵ

ϵ+ ϵ′

)
sin

(
πn(y − x+ ϵ)

ϵ+ ϵ′

)
exp

(
−T

2

n2π2ν2

(ϵ+ ϵ′)2

)}

=
1

ϵ′

∞∑
n=1

{
πn sin

(
πn(y − x)

ϵ′

)
exp

(
−T

2

n2π2ν2

ϵ′2

)}
≥ 0,

(9)

where the first equality follows from the fact that, by the considerations in Eq. (8), we can take
the limits into the summations; the second equality holds as sin(0) = 0 and cos(0) = 1; and the
inequality follows from the fact that q(y, T |X0 = x) ≥ 0 and limϵ→0 q(y, T |X0 = x) = 0, because
otherwise q(y, T |X0 = x) would be negative for ϵ sufficiently close to zero.

Second, we observe that∣∣∣∣ ∫ x

x−ϵ

∂

∂ϵ
q(y, T |X0 = x) dy

∣∣∣∣ ≤ ∫ x

x−ϵ

∣∣∣∣ ∂∂ϵq(y, T |X0 = x)

∣∣∣∣ dy
≤ ϵ

[
1

ϵ′
+

ϵ′ − 2(y − x)

ϵ′2

] exp
(

T
2

πν2

ϵ′2

)
π(

exp
(

T
2

πν2

4ϵ′2

)
− 1
)2 + ϵ

Tν2

ϵ′3

exp
(

T
2

πν2

ϵ′2

)(
exp

(
T
2

πν2

ϵ′2

)
+ 1
)
π2(

exp
(

T
2

πν2

4ϵ′2

)
− 1
)3 ϵ→0−−−→ 0,

(10)

where the first inequality follows by the triangle inequality, and where the second inequality
follows from Eq. (8). Taking the limit of the final expression is straightforward.
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Third, we conclude that

lim
ϵ→0

∫ x+ϵ′

x

∂

∂ϵ
q(y, T |X0 = x) dy =

∫ x+ϵ′

x
lim
ϵ→0

∂

∂ϵ
q(y, T |X0 = x) dy

=
1

ϵ′

∫ x+ϵ′

x

∞∑
n=1

{
πn sin

(
πn(y − x)

ϵ′

)
exp

(
−T

2

n2π2ν2

ϵ′2

)}
dy

=
1

ϵ′

∫ 1

0

∞∑
n=1

{
sin (πnz)πn exp

(
−T

2

n2π2ν2

ϵ′2

)}
dz,

where the first equality holds by the Theorem of Dominated Convergence, the second one holds
by the second to last line in (9), and the third equality follows by substitution. Recall that

∞∑
n=1

{
sin (πnz)πn exp

(
−T

2

n2π2ν2

ϵ′2

)}
≥ 0 (11)

for any z ∈ (0, 1), and notice that this inequality is strict for any z = 1
k with k ∈ N≥2. The latter

follows from the fact that sin(πn i
k ) = − sin(πnk+i

k ) for any i ≤ k, and sin(π i
k ) ≥ 0 for any i ≤ k

with a strict inequality for any i /∈ {0, k}, and πn exp
(
−T

2
n2π2ν2

ϵ′2

)
being strictly decreasing in n.

Since (11) is continuous in z, we conclude that it is strictly positive on a dense interval around
any z = 1

k with k ∈ N≥2. This, in turn, implies that limϵ→0

∫ x+ϵ′

x
∂
∂ϵq(y, T |X0 = x) dy > 0.

Combining all the considerations above, we finally conclude that

lim
ϵ→0

P0[XT ≤ x|X0 = x, τa,b ≥ T ] = lim
ϵ→0

∂
∂ϵ

∫ x
x−ϵ q(y, T |X0 = x) dy

∂
∂ϵ

∫ x+ϵ′

x−ϵ q(y, T |X0 = x) dy

= lim
ϵ→0

∫ x
x−ϵ

∂
∂ϵq(y, T |X0 = x) dy∫ x+ϵ′

x−ϵ
∂
∂ϵq(y, T |X0 = x) dy

=
limϵ→0

∫ x
x−ϵ

∂
∂ϵq(y, T |X0 = x) dy

limϵ→0

∫ x+ϵ′

x−ϵ
∂
∂ϵq(y, T |X0 = x) dy

= 0,

where the first equality follows by L’Hospital’s rule (given that the limit on the right-hand
side exists), the second equality follows by the Theorem of Dominated Convergence and by
Leibniz’s integral rule, the third equality follows from the fact that the limit of the numerator
and the limit of the denominator exist, and the last equality holds by (10) and by the fact that
limϵ→0

∫ x+ϵ′

x
∂
∂ϵq(y, T |X0 = x) dy > 0 and therefore, by limϵ→0

∂
∂ϵq(y, T |X0 = x) ≥ 0, also

limϵ→0

∫ x+ϵ′

x−ϵ
∂
∂ϵq(y, T |X0 = x) dy > 0. This completes the proof.

PART (f). To begin with, let ϵ′ = 0. By Part (c), we have to show that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≥
∫ b

x+α
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

39



for any α ∈ (0, ϵ), with a strict inequality if µ < 0. For any µ ≤ 0, we have exp
(
µ(y−x)

ν2

)
≥ 1 if

and only if y ≤ x, holding with a strict inequality whenever y < x and µ < 0. This implies that

∫ x−α

a
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy

≥
∫ πn

2
α
ϵ

πn
2

∑
n∈N,n odd

sin
(πn

2

)
sin
(πn

2
− z
)
exp

(
−T

2

n2π2ν2

4ϵ2

)
dz

=

∫ πn
2

πn
2

α
ϵ

∑
n∈N,n odd

sin
(πn

2

)
sin
(πn

2
+ z
)
exp

(
−T

2

n2π2ν2

4ϵ2

)
dz

≥
∫ b

x+α
exp

(
µ(y − x)

ν2

) ∞∑
n=1

{
sin

(
πn(x− a)

b− a

)
sin

(
πn(y − a)

b− a

)
exp

(
−T

2

n2π2ν2

(b− a)2

)}
dy,

where the two inequalities follow from the fact that x−a
b−a = 1

2 and sin
(
πn
2

)
= 0 for any even

n ∈ N, while the equality holds since sin
(
πn
2 − z

)
= sin

(
πn
2 + z

)
for any odd n ∈ N and any

z ∈ (0, πn2 ). The claim follows from the fact that the inequalities are strict whenever µ < 0.
Fix some ϵ > 0 and µ ≤ 0. Now, if ϵ′ > 0, the probability that XT is weakly below x,

conditional on reaching the expiration date when playing according to the stopping time τa,b,
P0[XT ≤ x|X0 = x, τa,b ≥ T ], increases compared to the case with ϵ′ = 0. This follows from the
fact that due to ϵ′ > 0 there is nowmore room below x than above x to reach the expiration date
T and from the continuity of the sample paths.

A.2: Motivating Example

Proof of Proposition 1. Wehave to show that, when the value function is linear, then for any point in
time t < T withXt = xt there exists a stopping time τa,b such that U s

(
XT∧τa,b |C

)
> xt or, equivalently,

P0[τa,b < T − t]·
[
p(a− xt)σ(a, xt) + (1− p)(b− xt)σ(b, xt)

]︸ ︷︷ ︸
(⋆)

+ P0[τa,b ≥ T − t] ·
∫
(a,b)

(z − xt)σ(z, xt) dΦµ(z)︸ ︷︷ ︸
(⋆⋆)

> 0,

where the probability p = p(a, b, µ) is defined in Eq. (6) and where P0[τa,b < T − t] as well as the
conditional CDF Φµ(z) := P0[XT ≤ z|X0 = x0, τa,b ≥ T − t] are described in Lemma 2.

Consider a threshold stopping time τa,b with a = xt − ϵ and b = xt + ϵ′ for some ϵ′ > ϵ > 0.
First, we show that there exists some threshold ϵ̂ > 0 such that for any ϵ < ϵ̂, it holds that (⋆) > 0.
Since p = b−xt

b−a = ϵ′

ϵ+ϵ′ , it follows that (⋆) > 0 holds if and only if

ϵϵ′

ϵ+ ϵ′
[
σ(xt + ϵ′, xt)− σ(xt − ϵ, xt)

]
> 0.

The claim then follows from the fact that — due to ordering — the salience weight σ(xt − ϵ, xt)

monotonically increases in ϵ, and σ(xt + ϵ′, xt) > σ(xt, xt) holds.
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Second, we show that there exists some ϵ̌ > 0, such that for any ϵ < ϵ̌, (⋆⋆) > 0. We have∫
(a,b)

(z − xt)σ(z, xt) dΦµ(z) ≥
∫
(x−ϵ,x)

(z − xt)σ(z, xt) dΦµ(z) +

∫
(x+ϵ,x+ϵ′)

(z − xt)σ(z, xt) dΦµ(z)

> −ϵσ

∫
(x−ϵ,x)

dΦµ(z) + ϵσ

∫
(x+ϵ,x+ϵ′)

dΦµ(z)

= ϵ
[(
1− Φµ(x+ ϵ)

)
σ − Φµ(x)σ

]
,

where the weak inequality holds as ϵ > 0 and the strict inequality follows by the definition of
σ := sup(x,y)∈R2

≥0
σ(x, y) and σ := inf(x,y)∈R2

≥0
σ(x, y). Now recall that σ < ∞ and σ > 0 by

assumption. By Lemma 2 (e), we have limϵ→0Φµ(x) = 0, which yields the claim.

A.3: Main Theoretical Result

The proof of our main theoretical result builds on the following lemma that we prove first.

Lemma 3. The auxiliary utility function ũ : R≥0 → R is of exponential growth at z = x.

Proof of Lemma 3. We have to find some α, β ∈ R>0, so that
[
ũ(z)+β

]
≤
[
ũ(x)+β

]
exp

(
α(z−x)

)
holds for any z ≥ 0. Set β = σ(v(x),v(x))v′(x)

α for some α > 0. We need to find some α > 0 so that

(
v(z)− v(x)

)
σ
(
v(z), v(x)

)
+ β ≤

[(
v(x)− v(x)

)
σ
(
v(x), v(x)

)
+ β

]
exp

(
α(z − x)

)
holds for all z ≥ 0. This condition is indeed satisfied if and only if

α
v(z)− v(x)

v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) + 1 ≤ exp
(
α(z − x)

)
or, equivalently,

v(z)− v(x)

v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) ≤
exp

(
α(z − x)

)
− 1

α
(12)

holds for all z ≥ 0. By construction, (12) holds at z = x. We distinguish two cases:

1. CASE: Let z < x. Divide both sides of (12) by z − x < 0, which gives

v(x)−v(z)
x−z

v′(x)

σ
(
v(z), v(x)

)
σ
(
v(x), v(x)

) ≥
exp
(
α(x−x)

)
−exp

(
α(z−x)

)
x−z

α
. (13)

Since the exponential function is strictly convex, such that, for any z < x, we have

exp
(
α(x− x)

)
− exp

(
α(z − x)

)
x− z

< α exp
(
α(x− x)

)
= α,

the right-hand side of (13) is strictly is less than 1. Since the value function is (weakly) concave,
which implies that, for any z < x, we have

v(x)− v(z)

x− z
≥ v′(x),
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and since σ
(
v(z), v(x)

)
> σ

(
v(x), v(x)

)
holds by ordering, the left-hand side of (13) is strictly

larger than 1. In sum, we conclude that, for any z < x, Condition (12) is satisfied for any α > 0.

2. CASE: Let z > x. Since both sides of (12) are zero at z = x, we can re-write (12) as follows∫ z

x

∂

∂w

[
exp

(
α(w − x)

)
− 1

α

]
− ∂

∂w

[
v(w)− v(x)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) ] dw ≥ 0,

which holds if and only if

∫ z

x
exp

(
α(w − x)

)
−
[
v′(w)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) +
[
v(w)− v(x)

]v′(w)
v′(x)

∂
∂v(w)σ

(
v(w), v(x)

)
σ
(
v(x), v(x)

) ]
dw ≥ 0.

(14)
A sufficient condition for (14) to hold is that

exp
(
α(w − x)

)
≥ v′(w)

v′(x)

σ
(
v(w), v(x)

)
σ
(
v(x), v(x)

) +
[
v(w)− v(x)

]v′(w)
v′(x)

∂
∂v(w)σ

(
v(w), v(x)

)
σ
(
v(x), v(x)

)
for any w ≥ x. When evaluated at w = x, this inequality is tight, since the salience function is
differentiable and thus limw→x

[
v(w)−v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= 0. Also, if the right-hand side

of this inequality is non-positive, the condition is certainly met. So, from now on, consider only
w > x for which the right-hand side is positive. Then, we can re-state the condition as follows

α ≥
ln

(
v′(w)
v′(x)

σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) +
[
v(w)− v(x)

]v′(w)
v′(x)

∂
∂v(w)

σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) )
w − x

, (15)

which has to hold for all relevant w > x. The right-hand side of (15) is bounded from above by

h(w) :=

ln

(
σ
(
v(w),v(x)

)
+
[
v(w)−v(x)

]
∂

∂v(w)
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

) )
w − x

,

since v is (weakly) concave. Hence, a sufficient condition for (15) to hold is given by α ≥
maxw∈(x,∞) h(w). Since we are free to choose any α > 0, it is thus sufficient to show that
maxw∈(x,∞) h(w) < ∞. First, sinceh(w) ≥ 0 for anyw ≥ x, we know that, if the limit limw→∞ h(w)

does not exist, then it has to be positive infinity. Then, by L’Hospital’s rule, we conclude that

0 ≤ lim
w→x

h(w) = lim
w→x

2v′(w) ∂
∂v(w)

σ
(
v(w),v(x)

)
+v′(w)

[
v(w)−v(x)

]
∂2

∂v(w)2
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

)
σ
(
v(w),v(x)

)
+
[
v(w)−v(x)

]
∂

∂v(w)
σ
(
v(w),v(x)

)
σ
(
v(x),v(x)

)
=

limw→x 2v
′(w) ∂

∂v(w)σ
(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
limw→x σ

(
v(w), v(x)

)
+
[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
=

2v′(x)

σ
(
v(x), v(x)

) ∂

∂v(w)
σ
(
v(w), v(x)

)∣∣∣∣
w=x

< ∞.
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where the third equality as well as the inequality follow from the fact that the salience function
is twice differentiable, which implies, in particular, limw→x

[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= 0

as well as limw→x

[
v(w) − v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
= 0. The fact that the limit exists further

justifies the application of L’Hospital’s rule. Second, again by L’Hospital’s rule, we have

0 ≤ lim
w→∞

h(w) = lim
w→∞

2v′(w) ∂
∂v(w)σ

(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)
σ
(
v(w), v(x)

)
+
[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
≤ lim

w→∞

2v′(w) ∂
∂v(w)σ

(
v(w), v(x)

)
+ v′(w)

[
v(w)− v(x)

]
∂2

∂v(w)2
σ
(
v(w), v(x)

)[
v(w)− v(x)

]
∂

∂v(w)σ
(
v(w), v(x)

)
= lim

w→∞

{
2v′(w)

v(w)− v(x)
+ v′(w)

∂2

∂v(w)2
σ
(
v(w), v(x)

)
∂

∂v(w)σ
(
v(w), v(x)

) }
≤ lim

w→∞

2v′(w)

v(w)− v(x)
= 0,

where the second inequality follows from the fact that lim∆→∞
∂2

∂∆2σ(x+∆, x) ≤ 0, as otherwise
σ(x+∆, x) could not be strictly increasing in∆ on (0,∞) and bounded from above.

Since h(z) is continuous on (x,∞), it follows from limw→x h(w) < ∞ and limw→∞ h(w) < ∞
that maxw∈(x,∞) h(w) exists. This, in turn, implies that there exists a constant α > 0, such that
Condition (14) is satisfied for any z > x, which was to be proven.

Proof of Theorem 1. The statement follows from Proposition 1 in Ebert and Strack (2015). We re-
state their argument here in terms of our notation. By Lemma 3, the auxiliary utility function is
of exponential growth at z = x, so that we can find α, β ∈ R>0 such that, for any z ≥ 0, we have

[
ũ(z) + β

]
≤
[
ũ(x) + β

]
exp

(
α(z − x)

)
. (16)

Recall that the preferences of an EUT agent are invariant under positive affine transformations,
which implies that the utility function û(z) := ũ(z) + β represents the exact same preferences.
We should also keep in mind that û(x) = β > 0.

Consider an EUT agent with a utility function û, and an ABM Xt = x + µt + νWt with an
initial value x and a drift µ < −1

2αν
2 =: µ̃. For any stopping time τ with P0[τ > 0] > 0, we have

E[û(Xτ )] ≤ û(x)E
[
exp

(
α(Xτ − x)

)]
= û(x)E

[
exp

(
αµτ + ανWτ

)]
= û(x)E

[
1 +

∫ τ

0

(
αµ+

1

2
α2ν2

)
exp

(
αµs+ ανWs

)
ds+

∫ τ

0
αν exp

(
αµs+ ανWs

)
dWs

]
= û(x)E

[
1 +

∫ τ

0

(
αµ+

1

2
α2ν2

)
exp

(
αµs+ ανWs

)
ds

]
< û(x),

where the first inequality holds by (16), the second equality holds by Itô’s Lemma, the third

43



equality holds by Doob’s Optional Sampling Theorem, and the second inequality holds by
û(x) > 0 and the assumption that µ < µ̃ (so that the expectation is less than one). Hence,
an EUT agent with a utility function û and, thus, the naïve salient thinker does not start to
gamble.

Proof of Corollary 1. Consider an Arithmetic Brownian Motion Xt = x + µt + νWt with a neg-
ative drift, which a naïve salient thinker with a linear value function would does not start. We
transform the process using the strictly increasing scale function (Revuz and Yor, 1999, pp. 302)

Ψ : R≥0 → R≥0, z 7→
∫ z

0
exp

(
−2

µ

ν2
y
)
dy,

which yields a scaled process (Ψ(Xt))t∈R≥0
with zero drift and an initial value Ψ(x).

Now consider a salient thinker with the exact same salience function, but a value function
v(z) = ν

2|µ| ln
(
1 + 2|µ|

ν z
)
, which is strictly increasing and concave. Since v(z) = Ψ−1(z), we

conclude that, for any stopping time τ , it has to hold that

E
[(
v
(
Ψ(Xτ )

)
− v
(
Ψ(x)

))
σ
(
v
(
Ψ(Xτ )

)
, v
(
Ψ(x)

)]
= E

[(
Xτ − x

)
σ(Xτ , x)

]
≤ 0,

where the inequality follows from the assumption that the naïve salient thinker with a linear
value function does not start the process (Xt)t∈R≥0

. Consequently, the naïve salient thinker with
a value function v(·) does not start the scaled process (Ψ(Xt))t∈R≥0

with zero drift.

A.4: Additional Results on Stop-Loss and Take-Profit Strategies

Proof of Proposition 2. Consider a stop-loss and take-profit strategy that corresponds to the thresh-
old stopping time τa,b with a := xt − ϵ− ϵ′ and b := xt + ϵ for some ϵ > 0, ϵ′ ≥ 0, and ϵ+ ϵ′ ≤ xt,
and that is therefore not a loss-exit strategy. Again, we denote as

Φµ(z) := Pt[XT ≤ z|Xt = xt, τa,b ≥ T ]
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the CDF of XT conditional on reaching the expiration date. Then, it follows that

U s
(
XT∧τa,b |C

)
− v(xt) ∝ Pt[τa,b < T ]×

[
p
(
v(xt − ϵ− ϵ′)− v(xt)

)
σ
(
v(xt − ϵ− ϵ′), v(xt)

)
+ (1− p)

(
v(xt + ϵ)− v(xt)

)
σ
(
v(xt + ϵ), v(xt)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(xt)

)
σ
(
v(z), v(xt)

)
dΦµ(z)

< Pt[τa,b < T ]× σ
(
v(xt + ϵ), v(xt)

)
×
[
pv(xt − ϵ− ϵ′) + (1− p)v(xt + ϵ)− v(xt)

]
+ Pt[τa,b ≥ T ]×

∫
(−ϵ,ϵ)

(
v(xt + z)− v(xt)

)
σ
(
v(xt + z), v(xt)

)
dΦ̃µ(z)

< Pt[τa,b ≥ T ]×
∫
(−ϵ,ϵ)

(
v(xt + z)− v(xt)

)
σ
(
v(xt + |z|), v(xt)

)
dΦ̃µ(z)

≤ Pt[τa,b ≥ T ]×
∫
(0,ϵ)

([
v(xt + z)− v(xt)

]
−
[
v(xt)− v(xt − z)

])
× σ

(
v(xt + z), v(xt)

)
dΦ̃µ(z) ≤ 0,

with p = p(a, b, µ) defined in Eq. (6). The first inequality follows from ordering, diminishing
sensitivity, and the fact that v(xt + ϵ) − v(xt) ≤ v(xt) − v(xt − ϵ − ϵ′) due to the concavity of
the value function as well as the construction of Φ̃µ, which is defined as Φ̃µ(z) := Φµ(xt + z)

for any z ≥ −ϵ and Φ̃µ(z) := 0 for any z < −ϵ. The second one follows from the drift being
non-positive in combinationwith Jensen’s Inequality, and diminishing sensitivity of the salience
function. The weak inequality holds by Lemma 2 (f), and the last inequality holds by concavity
of the value function, which implies v(xt + z)− v(xt) ≤ v(xt)− v(xt − z) for any z > 0.

Proof of Proposition 3. Let µ′ < 0. If the naïve salient thinker does start, there exists some thresh-
old stopping time τa,b such that U s

(
XT∧τa,b |C

)
> v(x). By Proposition 2, the stopping time τa,b

represents a loss-exit strategy; that is, the stopping thresholds satisfy x− a < b− x. By Lemma
2 (d), as the drift increases to µ′′ > µ′, the distribution of XT∧τa,b improves in terms of first-
order stochastic dominance. Hence, by Proposition 1 in Dertwinkel-Kalt and Köster (2020),
also U s

(
XT∧τa,bC

)
increases as we move from a drift µ′ to a drift µ′′.

In sum, if the naïve salient thinker does start a process with drift µ′ < 0, he does start any
process with drift µ′′ > µ′. Likewise, if the naïve salient thinker does not start a process with
µ′ ≤ 0, then he does not start for any process with µ′′ < µ′.

A.5: Salience and the Disposition Effect

Salience theory predicts the disposition effect if

σ
(
v(xt − ϵ), v(xt)

)
σ
(
v(xt + ϵ′), v(xt)

) × v(xt)− v(xt − ϵ)

v(xt + ϵ′)− v(xt)
(17)
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is increasing in xt. With a linear value function, this term simplifies to

σ(xt − ϵ, xt)

σ(xt + ϵ′, xt)
× ϵ

ϵ′
,

and substituting Bordalo et al. (2012)’s salience function into this term gives

|xt−(xt−ϵ)|
|xt|+|xt−ϵ|+θ

|xt−(xt+ϵ′)|
|xt|+|xt+ϵ′|+θ

× ϵ

ϵ′
=

|xt|+ |xt + ϵ′|+ θ

|xt|+ |xt − ϵ|+ θ
× |ϵ|

| − ϵ′|
× ϵ

ϵ′
.

Since we exclude negative outcomes, xt, xt+ ϵ′, and xt− ϵmust be positive, and we can remove
the absolutes. Similarly, because ϵ and ϵ′ are positive by definition, we have |ϵ| = ϵ and |−ϵ′| = ϵ′,
which gives

ϵ2(2xt + ϵ′ + θ)

(ϵ′)2 (2xt − ϵ+ θ)
.

Taking the first derivative with respect to xt yields

− 2ϵ2(ϵ′ + ϵ)

(ϵ′)2 (2xt + θ − ϵ)2
.

Since ϵ and ϵ′ are positive, the fraction’s numerator and denominator are always positive.
Hence, the whole term is always negative, and the original term (17) with the standard salience
function and a linear value function is decreasing in xt. Hence, salience theory’s standard spec-
ification cannot explain the disposition effect.

A.6: Stopping a Process Prematurely

In this section, we present simulations that suggest that (1) loss-exit strategies induce right-
skewed return distributions, and (2) salience theory could predict, after having started, stop-
ping before the expiration date.

To do this, we simulate the development of anABMwith starting value xt = 100, drift µ = 0,
standard deviation σ = 5 and expiration date T = 100, for a given loss-exit strategy τ60,180 with
lower threshold 60 and upper threshold 180 exactly 500 million times at each t ∈ {0, . . . , 100}.
If the ABM hits the bounds at any time, we terminate the process prematurely and register
the boundary value as the outcome. This approach provides us with an approximation of the
outcome distribution for the truncated ABM, enabling us to compute its skewness.

Figure 7 shows that loss-exit strategies indeed induce right-skewed return distributions, but
close to the expiration date the return distribution is approximately symmetric as the selected
thresholds are unlikely to be met before the expiration date.

For (2), we show that gambling becomes less attractive as time passes (i.e., t increases and
the remaining time T − t decreases). Specifically, we show that the salience-weighted utility
of gambling (Definition 2) is decreasing in t for a range of points in time. For that, we need to
assume a specific functional form of the salient thinker’s value and salience functions. We use
a linear value function and as a salience function we use an adaptation of the salience function
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Figure 7: Skewness of the outcome distribution induced by τ60,180

|x−y|/(|x|+ |y|+0.1) that Bordalo et al. (2012) use in their rank-based salience model (which is
equal to the salience function (4) that we presented in the main text with θ = 0.1 that Bordalo
et al. use in their Appendix), namely

σ(x, y) = δ
|x−y|

|x|+|y|+0.1 .

Here, δ > 1 controls the strengths of the salience distortion, and as there are no previous cali-
brations of the continuous salience model that could guide our choice of δ, we set δ = 2.25 With
these functional-form assumptions and the simulated outcome distribution, we can calculate
the salience-weighted utility of gambling at each t ∈ {0, . . . , 100}. However, to make this com-
putationally feasible, we need to reduce the number of states by assigning the outcomes of our
simulated distributions into bins of size 0.1.26

Figure 8 shows that, like the skewness of the outcome distribution, the salience-weighted
utility of gambling is decreasing over time for a considerable range of points in time. Initially,
the salience-weighted utility exceeds 100, so that gambling is attractive, but falls below this
value as the expiration date approaches. This demonstrates that a salient thinker might start to
gamble and stop before the expiration date. Notably, the fact that the salience-weighted utility
is increasing close to the expiration date follows from decreasing variance of the return distri-
bution together with diminishing sensitivity.27

25Because we use the continuous saliencemodel, we cannot rely on the calibration of δ of Bordalo et al. (2012) and
others that relied on the rank-based salience model. Assuming δ = 2 gives us only quite mild salience distortion,
which however suffices for our purpose of demonstrating in-between stopping.

26This is necessary because each simulation could lead to a different final value of the ABM, leaving us with up
to 500 million states.

27The intuition behind this result is the following: The return distribution close to the expiration date is quite
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Figure 8: Salience-Weighted Utility of Gambling over Time

Appendix B: Sophisticated Stopping Behavior Without Commitment

B.1: Statement of the Result

To solve for a sophisticate’s stopping behavior, we adopt the equilibrium concept of Ebert and
Strack (2018), which says that a stopping time τ constitutes an equilibrium if and only if at any
point in time it is optimal to follow the strategy, taking as given that all future selves will do so.

Definition 6 (Equilibrium). A stopping time τ constitutes an equilibrium if and only if at every point
in time t it is optimal to take the prescribed decision, given that all future selves will follow this strategy.

We find that a sophisticated salient thinker, who is restricted to choose stop-loss and take-
profit strategies, does not start any process with a non-positive drift, which implies that naïvete
is a necessary assumption to explain (unfair) casino gambling within the salience framework.

Proposition 4. Suppose that the agent can only choose stop-loss and take-profit strategies. Fix an initial
wealth level x ∈ R>0, and consider only processes with a non-positive drift. Then, in any equilibrium,
the sophisticated salient thinker does not start.

To fix ideas, let us assume that T = ∞. For any threshold stopping time τa,b, there exists
some wealth level y′ ∈ (a, b) such that the downside of the binary lottery Xτa,b is salient when
evaluated in the choice set C = {Xτa,b , y

′}. Moreover, if the process has a non-positive drift, then,
at any wealth level y, we have E[Xτa,b ] ≤ y. Since a salient thinker, with a weakly concave value
function, values a binary lottery with a salient downside strictly less than its expected value,
the sophisticated agent anticipates to stop no later than at wealth level y′. Thus, by Definition

symmetric as the bounds are unlikely to be hit, and by diminishing sensitivity the lower payoffs are overweighted
relative to the higher payoffs. This effect, however, decreases when the variance of the process decreases.
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6, the threshold stopping time τa,b cannot constitute an equilibrium. In contrast, at any initial
wealth level x ∈ R>0, not starting can be supported as an equilibrium outcome: given that all
future selves will not start, the current self is indifferent between not starting and starting the
process, so that it is indeed optimal to stop at every point in time. As we prove in the following,
the argument extends to processes with a finite expiration date.

B.2: Proof of Proposition 4 for a Finite Expiration Date

Fix an initial wealth level x and a non-positive drift µ ≤ 0. It remains to be shown that the
arguments presented above extend to processes with a finite expiration date T ∈ R>0.

Consider a stop-loss and take-profit strategy, which can be represented by a threshold stop-
ping time τa,b. We now argue that it cannot be an equilibrium to play according to stopping time
τa,b with b ∈ (x,∞). At any time t with a wealth level Xt = y ∈ (a, b), a salient thinker follows
the stop-loss and take-profit strategy that is represented by τa,b if and only if

Pt[τa,b < T ]×
[
p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(y)

)
σ
(
v(z), v(y)

)
dΦµ(z) ≥ 0

holds, where the probability p = (a, b, µ) is defined as in Eq. (6) andwhere the conditional CDF
Φµ(z) := P0[XT ≤ z|X0 = x0, τa,b ≥ T − t] is described in Lemma 2.

Notice that σ(v(a), v(y)) > σ(v(b), v(y)) holds for any wealth level y sufficiently close to b.
Also, we have Et[Xτa,b |Xt = y] ≤ y due to the non-positive drift. This implies, together with the
concave value function, that, for any wealth level y sufficiently close to b, it holds that

p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)
< 0.

Since, for any fixed t, we have limy→b Pt[τa,b < T ] = 1 by Lemma 2 (b), we thus conclude that
for any τa,b there is some y′ ∈ (a, b) such that

Pt[τa,b < T ]×
[
p
(
v(a)− v(y)

)
σ
(
v(a), v(y)

)
+ (1− p)

(
v(b)− v(y)

)
σ
(
v(b), v(y)

)]
+ Pt[τa,b ≥ T ]×

∫
(a,b)

(
v(z)− v(y)

)
σ
(
v(z), v(y)

)
dΦµ(z) < 0.

Hence, if the agent is restricted to choose from the set of all stop-loss and take-profit strategies,
there exists no equilibrium in which a sophisticated salient thinker does start. By the same
arguments as for the case of T = ∞, not starting can be supported as an equilibrium outcome,
which proves the claim.
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Appendix C: Additional Details on the Main Experiment

This appendix contains supplementary material to the experiment that we conducted.

C.1: Parameters and Layout of the Static Choices

After making the six selling decisions, subjects had to chooses twelve times between a binary
lottery and the safe option payings its expected value. The parameters of the lotteries as well as
the classification of skewness-seeking choices are depicted in Table 2. Figure 9 further illustrates
the layout that we used for these static choices in the experiment.

Lottery Safe Option Skewness Skewness-Seeking Choice
( 37.5, 80%; 0, 20%) 30 -1.5 Safe
(41.25, 64%; 10, 36%) 30 -0.6 Safe
( 45, 50%; 15, 50%) 30 0 Safe
( 60, 20%; 22.5, 80%) 30 1.5 Lottery
( 75, 10%; 25, 90%) 30 2.7 Lottery
( 135, 2%; 27.85, 98%) 30 6.9 Lottery
( 57.5, 80%; 20, 20%) 50 -1.5 Safe
(61.25, 64%; 30, 36%) 50 -0.6 Safe
( 65, 50%; 35, 50%) 50 0 Safe
( 80, 20%; 42.5, 80%) 50 1.5 Lottery
( 95, 10%; 45, 90%) 50 2.7 Lottery
( 155, 2%; 47.85, 98%) 50 6.9 Lottery

Table 2: Lotteries used to elicit skewness seeking in static choices. The safe option is equal to the lottery’s
expected value. In addition, all lotteries have the same variance, so that the first and the second set of
lotteries, respectively, differ only in terms of skewness.

Figure 9: The figure illustrates the layout of the static choices in the experiment (in German).
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C.2: Experimental Instructions

Screen 1 — Instructions: Overview of the Experiment
Please note that you are not allowed to use your mobile phone or talk to other participants dur-
ing the experiment. After you have finished the experiment and your payment appears on the
screen, please stay seated and wait for the other participants to finish. At this point you are
allowed to use your phone again. If you have a question, please raise your hand and a lab as-
sistant will come to you.

In this experiment you will make investment decisions. More precisely, you will have to decide
at what time and price you want to sell an asset. The price at which you can sell the asset will
change over time.

In total youwill make 6 such investment decisions. At the end of the experiment, wewill choose
one of your decisions at random and pay you the price at which you sold this asset. Irrespective
of this, you will receive a show up fee of 4 Euro. During the experiment, we will denote all
monetary values in the currency Taler, which will be converted to Euro at an exchange rate of 1
Euro = 10 Taler.

The only thing that changes between the different decisions is the long-term profitability of the
asset. The maximum time for which you can hold the asset will be 10 seconds in all decisions.
If you do not sell the asset in the first 10 seconds, it will automatically be sold at its price after
10 seconds. The initial value of the asset will always be 100 Taler.

In the following, we will explain to you the development of the asset step by step. In particular,
we will show you how the long-term profitability varies across the different assets. Moreover,
we will explain in detail which selling strategies you will be able to choose.

Screen 2 — Instructions: Development of the Asset Price
Below you can see a graph, which depicts the development of the price of an asset. As soon as
you press "Start", a line which represents the value of the asset will appear.

Please press "Start" now.

[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler.]

As mentioned previously, you cannot hold the asset for longer than 10 seconds. The final asset
price is 100 Taler.

Screen 3 — Instructions: Different Drifts
In this experiment, you will see assets of varying profitability. How profitable an asset is in the
long run is described by the drift of the asset. The drift denotes the average change in the value
of the process per second.

A positive drift implies that the asset will increase in value in the long run, while a negative
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drift implies that the asset will decrease in value in the long run. Notice that the value of the
asset varies over time. Hence, even an asset with a negative drift sometimes increases in value.

In order for you to get a feeling for how the value of an asset changes with the drift, we will
show you a few examples of different drifts on the next screens.

Screens 4-6 — Instructions: The Drift of an Asset
The drift of this asset is 0 [or 2 or -2]. Please press "Start" and watch the development of the
asset’s price.

[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler for the
process with drift 0, 120 Taler for the process with drift 2, and 80 for the process with drift -2.]

Screen 7 — Instructions: No Negative Prices
The asset does never take a negative value. Once the asset’s value reaches zero, it does not rise
again, but will stay at zero permanently. Please press "Start" and watch the development of the
asset’s price.

[Subjects are shown a graph illustrating that the process is absorbing in zero.]

Screen 8 — Instructions: The Process is not Bounded from Above
Independent of the drift, the value of the asset can, in principle, become arbitrarily large. The
probability that the asset’s value indeed becomes very large is the smaller the more negative the
drift is. But even an asset with a very negative drift can attain a very large value.

Screen 9 — Instructions: Strategies with an Upper and a Lower Bound
In each decision, you will set an upper and a lower bound at which you are willing to sell the
asset. If the price reaches the upper bound, the process will stop and you will be able to sell the
asset. If you sell the asset, you will receive the price that you have set as the upper bound. If
the price reaches the lower bound, you can also sell the asset. In this case you will receive the
price that you have set as the lower bound.

The upper boundmust always be above the current value of the process. The lower boundmust
always be below the current value of the process. You can adjust the bounds by clicking on the
red lines and moving them around. Important: throughout the experiment, you will have to
move the upper and the lower bound at least once, before you can start the process. Pleasemove
the bounds now and then click "Start".

[Subjects are shown a graph similar to the ones depicted in Figure 1. After moving the bounds
and starting the process, subjects cannot pause the process or adjust the bounds anymore.]

Screen 10 — Instructions: Pausing the Process
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After you have started the process, you can pause it at any time. While the process is paused,
you can move the upper and the lower bound. While the process is moving, you cannot move
the bounds.

Now you have to complete the following steps in the order listed below:

1. Move the upper and the lower bound.

2. Start the process.

3. Pause the process.

4. Move the upper and the lower bound again.

5. Start the process again.

[Subjects are shown a graph similar to the ones depicted in Figure 1, but without the opportu-
nity to sell the asset immediately.]

Screen 11 — Instructions: Sell Immediately
Before you start the process, you can instead sell the asset immediately by clicking on "Sell Im-
mediately". You can only do this before you start the process for the first time. After you have
started the process, the "Sell Immediately" button will disappear. Afterwards the process will
only stop prematurely if it either hits the upper or the lower bound. You can now either "Sell
Immediately" or — after moving each bound at least once — start the process.

[Subjects are shown a graph similar to the ones depicted in Figure 1.]

Screen 12 — Instructions: Change Bounds Before Starting the Process
In the first 10 seconds on each decision screen, you will only be able to move the bounds. After
that you can “Sell Immediately” or start the process.

If the process reaches either bound, it stops and you can sell the asset at the price at which this
bound is set. Alternatively, you can move the bounds and restart the process. Corresponding
buttons for both options will appear once the process reached a bound.

[Subjects are shown a graph similar to the ones depicted in Figure 1.]

Screen 13 — The Task is About to Start
Youwill now participate in three practice rounds. Afterwards you will play the decision round.
The drift in the practice rounds will be identical to the one in the decision round. The practice
roundswill give you the opportunity to get an intuition for how the process will develop during
the decision round.

The drift in the practice rounds and the subsequent decision round will be 0 [or -1 or -3 or -5 or
-10 or -20].
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Screen 14 — Practice Round
The drift in the practice rounds and the subsequent decision round will be 0 [or -1 or -3 or -5 or
-10 or -20].

[Subjects are shown a graph as depicted in the left panel of Figure 2.]

Screen 15 — Instructions: The drift of an asset
On this page you see 10 exemplary paths of an assetwith a drift of 0 [or -1 or -3 or -5 or -10 or -20].

[Subjects are shown a graph as depicted in the right panel of Figure 2.]

Screen 16 — Decision
The practice rounds are over— now it is getting serious! Pleasemake your selling decision. The
drift in this round is 0 [or -1 or -3 or -5 or -10 or -20].

[Subjects are shown a graph as depicted in Figure 1.]

Screen 17 — Additional Questions I: Instructions
On the next pages you will make 12 choices between a lottery and a safe payoff. From now on
all outcomes will be displayed in Euro.

At the end of the experiment, we will select one participant of this session at random. For this
participant, we will randomly select one of the 12 decisions and determine the outcome of the
chosen lottery. This participant will receive the corresponding payoff from the chosen lottery.

Example
If you select Lottery 1 in the example below, you will receive either 135 Euro or 27.85 Euro. The
probability that you receive 135 Euro is 2% and the probability that you receive 27.85 Euro is
98%. Alternatively, if you select Lottery 2, you will receive 30 Euro for sure.

[Subjects are shown the graph depicted in Figure 9.]

Screen 18: Additional Questions I - Decision 1
Please choose a lottery. As soon as you have chosen a lottery, a button labelled "Next Page" will
appear.

[Subjects are shown the graph as depicted in Figure 9.]

Screen 19 — Additional Questions II
Please answer the following questions. For every correct answer, you will receive one Taler.

If 10 machines take 10 minutes to make 10 nails, how many minutes do 100 machines need to
make 100 nails?
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A part of a pond is covered with water lilies. Every day the area covered with water lilies dou-
bles. If it takes 24 days until the whole pond is covered with water lilies, how many days does
it take until half of the pond is covered with water lilies?

If three elves can wrap three presents in one hour, how many elves does it take to wrap six
presents in two hours?

Jerry has both the 15th best and the 15th worst grade in his class. Howmany students are in the
class?

In a sports team tall members are three times as likely to win medals as short members. This
year the team won 60 medals in total. How many medals were won by short team members?

Screen 20 — Additional Questions III
Please answer the following questions. For every correct answer, you will receive one Taler.

Suppose you had 100 Euro in a savings account and the interest rate was 2% per year. After 5
years, how much do you think you would have in the account if you left the money to grow?

[Options: “More than 102 Euro”, “Exactly 102 Euro”, “Less than 102 Euro”.]

Suppose you had 100 Euro in a savings account and the interest rate was 20% per year and you
never withdraw money or interest payments. After 5 years, how much would you have on this
account in total?

[Options: “More than 200 Euro”, “Exactly 200 Euro”, “Less than 200 Euro”.]

Imagine that the interest rate on your savings account was 1% per year and the inflation was
2% per year. After 1 year, howmuch would you be able to buy with the money in this account?

[Options: “More than today”, “As much as today”, “Less than today”.]

Assume a friend inherits 10.000 Euro today and his brother inherits 10.000 Euro three years from
now. There is a positive interest rate. Who is richer because of the inheritance?

[Options: “My friend”, “Her brother”, “Both are equally rich”.]

Suppose that your income and all prices double in the next year. Howmuch will you be able to
buy with your income?

[Options: “More than today”, “As much as today”, “Less than today”.]

Screen 21 — General Information About You
Please enter your age:

Please choose your gender:
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Screen 22 — Enter Station Number
Please enter your station number:

Screen 23 — Payment
Your decision from round 2 will be paid.

You sold the asset for 100.00 Taler.

You received 1 Taler from answering the additional questions.

You are the participant whose lottery choice is paid. You receive an additional 80.00 Euro from
the lottery.

Your payment including the show up fee of 4 Euro is 94.10 Euro.
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Appendix D: Salience Predictions on Static Skewness Seeking

In this section, we extend a result fromDertwinkel-Kalt and Köster (2020) on a salient thinker’s
skewness seeking in static settings from the case of a linear value function to the case of aweakly
concave value function. Assuming a linear value function, Dertwinkel-Kalt and Köster (2020)
study, in particular, a salient thinker’s choice between a binary lottery with an expected value
E, a variance V , and a skewness S, which we denote by L(E, V, S), and the safe option paying
the lottery’s expected value E with certainty, and they show that:

Proposition 5 (Dertwinkel-Kalt and Köster, 2020). There exists some Ŝ = Ŝ(E, V ) ∈ R, such that
a salient thinker with a linear value function chooses L(E, V, S) over E if and only if S > Ŝ.

The proposition says that a salient thinker with a linear value function chooses a binary
lottery over its expected value if and only if this lottery is sufficiently skewed. In the following,
we will show that the same comparative static holds when assuming a weakly concave value
function. This provides a theoretical foundation for why we look at the empirical relationship
between a subject’s share of skewness-seeking choices in the static choices and the share of
loss-exit strategies this subject has chosen in the stopping problems (see Result 44 and Figure
5). A positive correlation between the two measures indicates that a subject seeking skewness
consistent with salience theory in static choices does so also in dynamic choices.

To begin with, recall that the parameters of the binary lottery L(E, V, S)— i.e. the outcomes
x1 and x2 as well as the probability p that x1 is realized— are uniquely defined by (Ebert, 2015):

x1 = E −

√
V (1− p)

p
, x2 = E +

√
V p

1− p
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2
+

S

2
√
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.

Now consider a salient thinker with a weakly concave value function v(·), who faces the
choice between the lottery L(E, V, S) and the safe option paying its expected value E with cer-
tainty. The salient thinker chooses lottery L(E, V, S) over its expected value E if and only if
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) , (18)

where π := 1−p
p denotes the relative likelihood of the lottery’s upside. To establish that a salient

thinker chooses the lottery if and only if it is sufficiently skewed, we will show that both the
left-hand side and the right-hand side of (18) are monotonic in the likelihood ratio π; namely,
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that the left-hand side decreases in π, while the right-hand side increases in π.
First, by the ordering property, the right-hand side of (18) monotonically increases in π.

Second, we observe that the left-hand side monotonically decreases in the likelihood ratio π:
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where, after taking the derivative, we first multiply by
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−v(E) to arrive at the final expression.

Combining these two observations, we conclude that there exists some π̂ ≥ 0, such that (18) is
satisfied if and only if π < π̂. Since π monotonically decreases in the probability p, and since
the probability p monotonically increases in the skewness S, we arrive at the following result:

Proposition 6. There exists some Ŝ = Ŝ(E, V ) ∈ R ∪ {∞}, such that a salient thinker with a weakly
concave value function chooses L(E, V, S) over E if and only if S > Ŝ.

This proposition confirms that the comparative static on the lottery’s skewness derived in
Dertwinkel-Kalt and Köster (2020), under the assumption of a linear value function, is robust
to allowing for a weakly concave value function. The only difference compared to the result
in Dertwinkel-Kalt and Köster (2020) is that a salient thinker with a sufficiently concave value
function will not choose the binary lottery, irrespective of how skewed it is. Formally, it follows
that the threshold value Ŝ in Proposition 6 satisfies Ŝ < ∞ if and only if

lim
π→0

∂

∂π

π

v

(
E +

√
V
π

)
− v(E)

v(E)− v
(
E −

√
V π
) −

σ
(
v
(
E −

√
V π
)
, v(E)

)
σ

(
v

(
E +

√
V
π

)
, v(E)

)
 < 0,

which depends both on the curvature of the value and on the curvature of the salience function.
But, as illustrated in Proposition 5, the above inequality is certainly satisfied for a linear value
function and, by continuity, it will hold for mildly concave value functions as well.
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Appendix E: Additional Figures
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Figure 10: The left panel depicts the share of subjects holding the asset until the expiration date, separately
for the different drifts. The right panel depicts the share of subjects selling the asset immediately.
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Figure 11: The left panel depicts the share of subjects holding the asset until the expiration date, separately
for the different drifts and below- and above-median subjects in terms of cognitive skills. The right panel
depicts the share of below- and above-median subjects selling the asset immediately.
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Figure 12: The figure depicts the share of initial loss-exit strategies chosen for the different drifts.

59



After

Loss-Exit Gain-Exit

Before
Loss-Exit 63.31% 10.31%

Gain-Exit 12.01% 14.37%

After

Loss-Exit Gain-Exit

Loss-Exit 72.65% 0%

Gain-Exit 3.48% 23.87%

Figure 13: The left (right) table gives a categorization of all strategy adjustments that we observe
throughout the experiment when a bound (no bound) is hit. “Before” indicates, in the left table, which
type of strategy the subject has chosen last, and, in the right table, the type of strategy that is played in
the moment in which the process is paused.
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Figure 14: The figure depicts the share of subjects choosing each of the lotteries depicted in Table 2 over
its expected value.
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Appendix F: Stopping Behavior under Cumulative Prospect Theory

In this section, we analyze the stopping behavior of a naïve CPT-agent under the assumption
of a finite expiration date. Ebert and Strack (2015) study the case without an expiration date
and show that, under mild regularity assumptions on the probability weighting function,28 a
naïve CPT-agent never stops an ABM irrespective of its drift. In what follows, we will show
numerically that this strong result still holds for a finite expiration date.

CPT preferences. Let X be a real-valued random variable. A CPT-agent evaluates each out-
come of this random variable relative to a reference point r ∈ R via a strictly increasing value
function U : R → R. All outcomes larger than the reference point are classified as gains, while
outcomes smaller than the reference point are classified as losses. Throughout this section, we
assume a (weakly) S-shaped value function (Ebert and Strack, 2015, Online Appendix W.2),

U(x) =

(x− r)α if x ≥ r,

−λ · (r − x)α if x < r,
(19)

with parameters α ∈ (0, 1] and λ > 1.29 According to Tversky and Kahneman (1992), cumu-
lative probabilities are distorted by a weighting function. More precisely, there are (potentially
different) non-decreasing weighting functions w−, w+ : [0, 1] → [0, 1] for gains and losses with
w−(0) = w+(0) = 0 and w−(1) = w+(1) = 1. Throughout this section, we use the following
weighting functions, which have been proposed by Tversky and Kahneman (1992):30

w−(p) =
pδ

(pδ + (1− p)δ)1/δ
and w+(p) =

pγ

(pγ + (1− p)γ)1/γ
for 0.279 < δ, γ < 1.

The CPT value of the random variable X can be defined as (see Kothiyal et al., 2011)

CPT (X) :=

∫
R+

w+
(
P[U(X) > y]

)
dy −

∫
R−

w−(P[U(X) < y]
)
dy

=

∫
R+

w+
(
P[X > r + y1/α]

)
dy −

∫
R−

w−(P[X < r − (−y)1/α/λ]
)
dy,

(20)

where the second equality holds due to a (weakly) S-shaped value function in Eq. (19).

Stopping strategies. Consider a threshold stopping time τa,b and therefore induces a random
wealth levelXT∧τa,b . If the reference point r ∈ R satisfies r ∈ [a, b], then theCPTvalue associated

28In their Online Appendix W.1, Ebert and Strack (2015) verify that common CPT specifications satisfy the suf-
ficient conditions that they impose on the probability weighting function to derive their main result.

29As argued in Wakker (2010, p. 270), the model is ill-specified when taking different α for gains and losses.
30The bounds on the parameters are taken from Dhami (2016, p. 122).
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with this random variable is given by

CPT (XT∧τa,b) =

∫
(0,(b−r)α)

w+
(
Pt[XT∧τa,b > r + y1/α]

)
dy

−
∫
(−λ(r−a)α,0)

w−(Pt[XT∧τa,b < r − (−y)1/α/λ]
)
dy.

(21)

For a ≥ r, in contrast, the CPT value of the random variable XT∧τa,b equals

CPT (XT∧τa,b) =

∫
((a−r)α,(b−r)α)

w+
(
Pt[X > r + y1/α/λ]

)
dy + (a− r)α, (22)

while for b ≤ r it is given by

CPT (XT∧τa,b) = −
∫
(−λ(r−a)α,−λ(r−b)α)

w−(Pt[X < r − (−y)1/α/λ]
)
dy − λ(r − b)α. (23)

At time t < T with a current wealth level xt ∈ R>0, we consider the following class of
threshold stopping times:31 for k ∈ R>0 and p ∈ (0, 12), define at,k = xt − k · p and bt,k =

xt − k · (1 − p). Notice that, for any drift µ ≤ 0, these threshold stopping times are not only
loss-exit strategies, but also induce a right-skewed distribution of returns.

Numerical analysis of stopping behavior. To ease the illustration of the results, we assume
that the reference point constantly adjusts to the current wealth level (i.e., rt = xt for any t).
This implies, in particular, that the wealth level itself does not matter for a CPT-agent’s stopping
behavior, which makes the numerical analysis much more convenient. Based on the estimates
in Tversky and Kahneman (1992), we set α = 0.88 and λ = 2.25 as well as δ = 0.69 and γ = 0.61.

Assuming a drift of µ = −2 and a volatility of ν = 5, Figure 15 depicts, for a given point in
time t, the CPT value of the random variable XT∧τat,k,bt,k

as a function of the remaining time,
T − t, until the expiration date for the strategies with k ∈ {2, 4, 6, 8, 10} and p = 0.01. Since
we have rt = xt by assumption, a CPT-agent does not stop at time t as long as there exists
a stopping strategy that yields a strictly positive CPT value. We observe from Figure 15 that
for any remaining time until the expiration date, there indeed exists a threshold stopping time
that yields a strictly positive CPT value. When shifting the stopping thresholds closer to the
current wealth level (by shifting the parameter k closer to zero), we obtain a similar picture
for any arbitrarily negative drift. Hence, at least for the chosen parameter values, a naïve CPT-
agent does not stop before the expiration date or, in other words, the stark never-stopping result
derived by Ebert and Strack (2015) still holds for a finite expiration date.

Figure 15 highlights a couple of numerical regularities that are suggestive for the result not
to hinge on the exact parameters chosen here: First, the CPT value derived from the depicted
stopping strategies becomes flat in the remaining timeuntil the expirationdate relatively quickly
and the earlier so the closer the stopping thresholds are to the current wealth level (i.e., the
closer is k to zero). This suggests that the result derived by Ebert and Strack (2015) —which is

31These strategies are similar to those used in the proof of Theorem 1 in Ebert and Strack (2015).
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Figure 15: The figure depicts CPT (XT∧τat,k,bt,k
) as a function of the remaining time, T − t, until the

expiration date for time invariant strategies with k ∈ {2, 4, 6, 8, 10} and p = 0.01 as described above. We
assume a drift parameter of µ = −2 and a volatility parameter of ν = 5. The preference parameters are
set to α = 0.88 and λ = 2.25, and the parameters of the weighting function are δ = 0.69 and γ = 0.61.

proven by the explicit use of strategies with thresholds close to the current wealth level — does
not rely on T being infinity, but should hold already for rather short expiration dates. Second,
as the remaining time until the expiration date gets smaller, the CPT value of the depicted loss-
exit strategies increases (before it eventually falls to zero). Both patterns are robust to different
specifications (e.g., a piece-wise linear value function with α = 1 or a reference point of rt = 0).
This suggests that the never-stopping result derived by Ebert and Strack (2015) is indeed robust
to allowing for a finite expiration date. All numerical results are available upon request.

Appendix G: Salience-Driven Decoy Effects

G.1: Overview of the Experimental Design and Results

Themost striking difference compared to the alternativemodels discussed above is that salience
theory is first and foremost a model of context-dependent behavior: the evaluation of an option
depends on the alternatives at hand. To conclusively rule out models of context-independent
behavior, we next study the role of (dominated) decoys in stopping problems. Such decoy effects
are not only inconsistent with themodels discussed in the preceding section, but alsowith other
prominent models such as expectation-based loss aversion (Kőszegi and Rabin, 2007).
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The modified stopping problem. Suppose there is no longer just one asset, but two assets.
We refer to these assets as G(reen) and B(blue), and assume that their prices follow the ABMs

dXt = µGdt+ νdWt and dYt = µBdt+ νdUt, respectively.

Both assets share the same initial valueX0 = z = Y0 and the same volatility ν ∈ R>0, but Asset
G has a larger drift than Asset B, µG > µB . We further assume that the standard Brownian
Motions (Wt)t∈R≥0

and (Ut)t∈R≥0
are independent of each other. There is no expiration date.

pGpB pG(1− pB) (1− pG)pB (1− pG)(1− pB)

Invest in Asset G a a b b

Invest in Asset B a b a b

No Investment z z z z

Table 3: Joint distribution of the different options.

If the agent invests in either asset, he is restricted to choose a loss-exit strategy, represented by
the threshold stopping time τa,b with a < z < b, which he cannot revise over time. Since there
is no expiration date, the asset is sold at one of these thresholds, and since the agent cannot
revise his strategy, this happens in finite time with probability one. Denote as pG := p(a, b, µG)

the probability of Asset G being sold at the lower price a < z, and as pB := p(a, b, µB) the
corresponding probability for Asset B. Since µG > µB and, therefore, pG < pB , investing in
AssetB is dominated (in the sense of first-order stochastic dominance) by investing in AssetG.
We, therefore, refer to Asset B as a (dominated) decoy (e.g., Huber et al., 1982). We compare two
scenarios: the choice set is either {Xτa,b , z} (no decoy) or {Xτa,b , Yτa,b , z} (decoy).

Salience-driven decoy effects. According to salience theory, investing in AssetG can become
more attractive in the presence of the dominated Asset B. More precisely, a salient thinker
compares the selling price of Asset G state-by-state to some reference point given by a convex
combination of the other options’ outcomes (see Table 3 for the joint distribution of the different
options).32 As a consequence, when adding the dominated decoy to the choice set, the salience
of Asset G’s upside — i.e. selling it at a price b — changes: by the contrast effect, it becomes
more salient whenever the dominated asset is sold at a price a < z and less salient when it is
sold at b > z. Likewise, the downside of investing in Asset G — i.e. selling it at a price a —
becomes more salient when the dominated asset is sold at a price b > z and less salient when
it is sold at a price a < z instead. Since the dominated asset is the more likely to be sold at
the lower price the more negative its drift µB is, the upside of Asset G becomes relatively more
salient as µB decreases. In other words, according to salience theory, (i) the presence of the
dominated asset can boost demand for Asset G, and (ii) this decoy effect is (weakly) stronger
for dominated assets with a more negative drift (see Appendix G.3 for a formal derivation).

32While Bordalo et al. (2012) assume that the reference point is given by the state-wise average over the alternative
options, we allow for a much more flexible functional form (see Appendix G.2 for details).
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Experimental design and implementation. We conducted an online experiment to test for
such decoy effects on stopping behavior.33 As in the main experiment, we set the initial price to
z = 100 Taler (this time converted to £ at a ratio of 60:1) and the volatility to ν = 5. Throughout,
Asset G has zero drift, while the dominated asset’s drift is either µB = −10 or µB = −20. Sub-
jects could always choose the outside option of No Investment. Figure 16 illustrates the decision
screens with (right panel) and without (left panel) a dominated decoy.

Figure 16: Screenshots of the decision screens with and without a decoy.

If a subject decides to invest in an asset, he can sell it only at pre-specified prices 90 and
190. More precisely, if a subject invests, the price of the asset will change until it reaches either
90 or 190. Recall that such a loss-exit strategy is potentially attractive to a salient thinker (see
Proposition 2). If a subjects does not invest, he receives an asset’s initial price with certainty.

Each subject made three investment decisions: one decision with a binary choice set (Asset
Green vs. No Investment) and two with a larger choice set (Asset Green vs. Asset Blue vs. No
Investment) for µB ∈ {−10,−20}. The order of decisions was randomized at the subject level.

As in themain experiment, to explain the drift of an ABM to the subjects, they had to succes-
sively draw three sample paths from the underlying process, and then saw an overview of five
additional sample paths of this process before making a decision (see Figure 17 for examples
of the latter with and without a decoy). The sample paths were randomly drawn at the subject
level; that is, different subjects saw different sample paths of the same underlying process.

Figure 17: Screenshots of the sampling screens with and without a decoy.

At the end of the experiment, for each subject, one of the three investment decisions was
33The experimental design, including the fully specified salience model and its predictions, was pre-registered

in the AEA RCT registry as trial AEARCTR-0007398. Moreover, the experiment is available via the following link:
https://os-experiment-archive.herokuapp.com/demo.
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randomly drawn by the computer to be payoff-relevant. All subjects received an additional £3
for their participation in the experiment.

We conducted 7 sessions inMarch 2021 via the OxfordNuffield CESS lab, using the software
oTree (Chen et al., 2016). A total number of n = 247 subjects completed the experiment.34 The
experiment lasted for around 11 minutes on average. Subjects earned £4.68 on average, with
earnings ranging from £4.50 to £6.17.

Experimental results. The share of subjects investing in the viable Asset Green increases by
roughly 10 p.p. when a dominated decoy is available (see Figure 18). As pre-registered, when
a decoy was available, we drop the subjects who chose the dominated option — roughly, 4% of
the subjects for µB = −10 and 2% of the subjects for µB = −20 — before calculating the share
of subjects investing in the viable asset. This entails the implicit assumption that choosing the
decoy is a mistake that is independent of whether a subject actually wants to invest or not. It
is important to note, however, that the observed decoy effect is robust (but slightly smaller) to
dealing with subjects who chose the decoy in a different way (e.g. assuming that all of them
actually prefer not to invest).35 This finding is consistent with salience theory, but it is clearly
inconsistent with models of context-independent behavior such as EUT or CPT.
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Figure 18: The figure depicts the share of subjects that invested in Asset Green with and without a decoy.
As pre-registered, when a decoy was available, we drop the subjects who chose the dominated option
(roughly, 4% for µB = −10 and 2% for µB = −20) before calculating these shares. We further present
the results of t-tests with standard errors being clustered at the subject level. †: p-value = 0.013.

34All of these subjects passed an attention check that tested for comprehension of the experimental instructions.
35The most conservative way to test for decoy effects is to assume that all subjects who chose the decoy actually

prefer not to invest. When making this assumption, the decoy effect ranges from 7.7 p.p. (if µB = −10) to 8.5 p.p.
(if µB = −20). Using t-tests with standard errors being clustered at the subject level, we find that the latter effect is
statistically significant at the 5%-level (p-value = 0.027), while the former effect almost is (p-value = 0.053).
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We do not find a significant effect of the dominated decoy’s drift on how attractive Asset
Green appears to be. At the same time, we cannot reject the null-hypothesis that the share of
subjects choosing Asset Green is (weakly) larger for µB = −20 than for µB = −10. Hence, the
observed behavior is indeed consistent with salience theory.

G.2: A More General Salience Model

Consider a choice set C = {Xi}ni=1. The randomvariables (or lotteries)X1 toXn are non-negative
with a joint cumulative distribution function F : Rn

≥0 → [0, 1]. A state of the world refers to a
tuple of outcomes, (x1, . . . , xn) ∈ Rn

≥0. A salient thinker compares the value of a given lottery,
v(Xi), to a reference point Ri = ϕ(v(X1), . . . , v(Xi−1), v(Xi+1), . . . , v(Xn)). Bordalo et al. (2012)
assume that the reference point is given by the state-wise average over all alternative options:
Ri =

1
n−1

∑
j ̸=i v(Xj). We, in contrast, allow for a more general reference point ϕ : Rn−1 → R

that (i) strictly increases in each of its arguments and (ii) satisfies ϕ(z, . . . , z) = z.

Definition 7. The salience-weighted utility of lottery Xi evaluated in C = {Xj}nj=1 equals

U s(X|C) = 1∫
R2
≥0

σ
(
v(xi), ri

)
dF (x1, . . . , xn)

∫
R2
≥0

v(xi) · σ
(
v(xi), ri

)
dF (x1, . . . , xn),

where ri = ϕ(v(x1), . . . , v(xi−1), v(xi+1), . . . , v(xn)), and where σ : R2
≥0 → R>0 is a salience function

that is bounded away from zero.

G.3: Salience Predictions on Decoy Effects

Consider the choice set C = {Xτa,b , Yτa,b , z}. Here, the reference pointRk relative to which Asset
k ∈ {G,B} is evaluated has the following distribution:

pGpB pG(1− pB) (1− pG)pB (1− pG)(1− pB)

RG ϕ
(
v(z), v(a)

)
ϕ
(
v(z), v(b)

)
ϕ
(
v(z), v(a)

)
ϕ
(
v(z), v(b)

)
RB ϕ

(
v(z), v(a)

)
ϕ
(
v(z), v(a)

)
ϕ
(
v(z), v(b)

)
ϕ
(
v(z), v(b)

)
Table 4: Distribution of the reference points in the larger choice set.

If the choice set includes also the dominated AssetB and if this dominated asset has a suffi-
ciently negative drift, then— compared to the case with a binary choice set —AssetG becomes
more attractive to a salient thinker. Hence, a sufficiently “bad” Asset B serves as a decoy that
boosts demand for Asset G. More formally, we obtain the following proposition:

Proposition 7 (Salience-Driven Decoy Effect).

(a) The salient thinker will never invest in the dominated Asset B.

(b) The salience-weighted utility derived from investing in Asset G monotonically increases in pB .

(c) There is some µ̂ ∈ R ∪ {−∞}, so that a salient thinker invests in Asset G if and only if µB < µ̂.
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(d) If the salient thinker invests in Asset G when facing the binary choice set {Xτa,b , z}, then µ̂ ∈ R.

Proof. Part (b). The salience-weighted utility from investing in Asset G is

U s(Xτa,b |C) = v(a)π(pG, pB) + v(b)
[
1− π(pG, pB)

]
,

where
π(pG, pB) :=

pGsa(pB)

pGsa(pB) + (1− pG)sb(pB)
,

with sa(pB) := pBσ
(
v(a), ϕ(v(z), v(a)

)
+(1−pB)σ

(
v(a), ϕ(v(z), v(b)

)
being the average salience

of a and sb(pB) := pBσ
(
v(b), ϕ(v(z), v(a)

)
+ (1− pB)σ

(
v(b), ϕ(v(z), v(b)

)
being that of b.

Since ϕ(v(z), v(b)) > ϕ(v(z), v(a)) and, thus, σ
(
v(a), ϕ(v(z), v(b)

)
> σ

(
v(a), ϕ(v(z), v(a)

)
by

the ordering property, sa(pB) is strictly decreasing in pB . Analogously, ordering implies that
σ
(
v(b), ϕ(v(z), v(a)

)
> σ

(
v(b), ϕ(v(z), v(b)

)
, so that sb(pB) is strictly increasing in pB . It follows

that π(pG, pB) is strictly decreasing and, thus, U s(Xτa,b |C) is strictly increasing in pB .

Part (a). Next, we observe that

∂

∂pG
π(pG, pB) =

sa(pB)
[
pGsa(pB) + (1− pG)sb(pB)

]
− pGsa(pB)

[
sa(pB)− sb(pB)

](
pGsa(pB) + (1− pG)sb(pB)

)2
=

sa(pB)sb(pB)(
pGsa(pB) + (1− pG)sb(pB)

)2 > 0,

which, in turn, implies that U s(Xτa,b |C) is strictly decreasing in pG.
Combining this with Part (b) and the fact that pB > pG, we conclude:

U s(Xτa,b |C) = v(a)π(pG, pB) + v(b)
[
1− π(pG, pB)

]
> v(a)π(pG, pG) + v(b)

[
1− π(pG, pG)

]
> v(a)π(pB, pG) + v(b)

[
1− π(pB, pG)

]
= U s(Yτa,b |C).

Part (c). Follows immediately from the fact that U s(Xτa,b |C) is increasing in pB .

Part (d). Given the binary choice set C′ = {Xτa,b , z}, the salience-weighted utility from
investing in Asset G is given by U s(Xτa,b |C′) = v(a)π̃ + v(b)

[
1− π̃

]
, where

π̃ :=
pGσ

(
v(a), v(z)

)
pGσ

(
v(a), v(z)

)
+ (1− pG)σ

(
v(b), v(z)

) .
Notice that

lim
pB→1

π(pG, pB) =
pGσ

(
v(a), ϕ(v(z), v(a)

)
pGσ

(
v(a), ϕ(v(z), v(a)

)
+ (1− pG)σ

(
v(b), ϕ(v(z), v(a)

) < π̃,

since, by ordering, σ
(
v(a), ϕ(v(z), v(a)

)
< σ

(
v(a), v(z)

)
andσ

(
v(b), ϕ(v(z), v(a)

)
> σ

(
v(b), v(z)

)
.

Hence, if U s(Xτa,b |C′) > 0, then also limpB→1 U
s(Xτa,b |C) > 0.
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G.4: Experimental Instructions

Screen 1 — Instructions: Overview of the Experiment
In this experiment you will make investment decisions. More precisely, in each decision, you
will have to decide whether to invest in an asset and, if so, in which one. In total you will make
3 investment decisions.

At the end of the experiment, we will choose one of your 3 decisions at random to be payoff-
relevant. Your payment depends on whether you invested in an asset and, if so, at which price
the asset is sold. During the experiment, we will denote all monetary values in the currency
Taler which will be converted to £ at an exchange rate of £1 = 60 Taler.

You will receive a show up fee of £3 for your participation in the experiment.

Screen 2 — Instructions: Development of the Asset Price
Below you can see a graph, which depicts the development of the price of an asset, for a period
of 10 seconds. As soon as you press "Start", a line which represents the value of the asset will
appear. Please press "Start" now.
[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler]

Screen 3 — Instructions: Different Drifts
The assets that you can choose in this experiment differ only in their long-term profitability.
How profitable an asset is in the long run is described by the drift of the asset. The drift denotes
the average change in the asset’s value per second.

A positive drift implies that the asset will increase in value in the long run, while a negative
drift implies that the asset will decrease in value in the long run. A drift of zero implies that the
asset’s value will neither in- nor decrease in the long run.

Notice, though, that even an asset with a negative drift sometimes increases in value, and that
– independent of its drift – the value of an asset can, in principle, become arbitrarily large. The
probability that an asset’s value indeed becomes very large is the smaller the more negative the
drift is.

To give you a feeling of how the long-run value of an asset changes with its drift we will show
you now a few examples of assets with different drifts.

Screens 4-6 — Instructions: The Drift of an Asset
The drift of this asset is 0 [or 2 or -2]. Please press "Start" and watch the development of the
asset’s price.

[Subjects are shown a graph of an exemplary price path with a final price of 100 Taler for the
process with drift 0, 120 Taler for the process with drift 2, and 80 for the process with drift -2.]
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Screen 7 — Instructions: Upper and Lower Bounds on the Asset’s Price
If you decide to invest in an asset, it will be sold at pre-specified prices: either at 90 (lower
bound) or at 190 (upper bound). All available assets will be automatically sold as soon as their
prices hit one of these bounds. If the price of an asset reaches the upper bound of 190, the asset
will be sold and you will receive 190 Taler. If the price reaches the lower bound of 90, the asset
will be sold as well and you will receive 90 Taler.

Importantly, there is no expiration time. The price of an asset will change until it hits one of the
two bounds.

[Subjects are shown a graph with a button labelled "Asset Green". When they click the button,
a price path appears]

Screen 8 — Instructions: Upper and Lower Bounds on the Asset’s Price
You have to decide repeatedly whether to invest in one of at most two different assets. You can
always opt for the alternative of “no investment” in which case you will receive 100 Taler (i.e.
the starting value of each asset) with certainty.

In the example below you can choose among the following three options:

• No investment

• Invest in Asset Green (which has drift 0)

• Invest in Asset Blue (which has drift -2)

Please make a decision now.

[Subjects are shown a graph with three buttons labelled "Asset Green", "Asset Blue" and "Sell
Immediately"]

Screen 9 — Questions about the Instructions
[Subjects see a graph with an upper bound of 190, a lower bound of 90 and a starting value of
100]

[Subjects need to answer the following questions]

• Suppose you choose "No Investment". How many Taler do you get?

• What is the starting value of the asset?

• Suppose you have invested in the asset and it hits the lower bound. How many Taler do
you get?

• If an asset has a drift of 2 it will:
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[In the last question they choose between the following options]

• increase by an amount of 2 every second

• increase by an amount of 2 per second on average over a long time period

• vary by an amount of 2 every second

Screen 10 — Decision round x of 3
In the upcoming decision you will be able to choose between the following options:

• No investment. (100 Taler with certainty)

• An asset with a drift of 0. (Green Asset)

• An asset with a drift of [-10 / -20] (Blue Asset)

Before you make your decision we will show you a few exemplary price paths of the asset.

Screen 11 — Sampling page x of 3
Below you can see exemplary price paths of Asset Green (with drift 0), for a period of ten sec-
onds.

[Subjects see one individual price path from Asset Green. If there is also an Asset Blue, they
see a price path from Asset Blue as well. This screen is shown 3 times in a row]

Screen 12 — Overview of 5 Exemplary Price Paths
Below you can see 5 paths from the Asset Green with drift 0.

[Subjects see 5 price paths fromAsset Green. If there is also anAsset Blue, they see 5 price paths
from Asset Blue as well.]

Screen 13 — Decision x of 3
Please choose between Asset Green (with drift 0) [and Asset Green (with drift -10/-20)] and
"No Investment".

[Subjects are shown a graph with three buttons labelled "Asset Green", "Asset Blue" and "Sell
Immediately"]

Screen 14 — Payoff
Your decision from round [a] will be paid.

You sold the asset for [b] Taler.

You earned a bonus payment of £[c] on top of your showup fee of £3. Your total payment is £[d].
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